aboutsummaryrefslogtreecommitdiff
path: root/src/algebra
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2010-04-08 08:43:08 +0000
committerdos-reis <gdr@axiomatics.org>2010-04-08 08:43:08 +0000
commit4801946deb56530e2904c015dc80907614569373 (patch)
treefb0ee9be5bfc472afdd41b251076506e53d73bd6 /src/algebra
parentb107db3eaba8069a8a47f2dc3f39b9858e954efa (diff)
downloadopen-axiom-4801946deb56530e2904c015dc80907614569373.tar.gz
* algebra/boolean.spad.pamphlet (atoms$PropositionalFormula):
Rename from terms.
Diffstat (limited to 'src/algebra')
-rw-r--r--src/algebra/boolean.spad.pamphlet14
1 files changed, 7 insertions, 7 deletions
diff --git a/src/algebra/boolean.spad.pamphlet b/src/algebra/boolean.spad.pamphlet
index b556b37b..a87b4c9b 100644
--- a/src/algebra/boolean.spad.pamphlet
+++ b/src/algebra/boolean.spad.pamphlet
@@ -270,8 +270,8 @@ PropositionalFormulaFunctions1(T): Public == Private where
Public == Type with
dual: PropositionalFormula T -> PropositionalFormula T
++ \spad{dual f} returns the dual of the proposition \spad{f}.
- terms: PropositionalFormula T -> Set T
- ++ \spad{terms f} ++ returns the set of terms appearing in
+ atoms: PropositionalFormula T -> Set T
+ ++ \spad{atoms f} ++ returns the set of atoms appearing in
++ the formula \spad{f}.
simplify: PropositionalFormula T -> PropositionalFormula T
++ \spad{simplify f} returns a formula logically equivalent
@@ -291,13 +291,13 @@ PropositionalFormulaFunctions1(T): Public == Private where
conjunction(dual first f2, dual second f2)
error "formula contains `equiv' or `implies'"
- terms f ==
+ atoms f ==
(t := isAtom f) case T => { t }
- (f1 := isNot f) case F => terms f1
+ (f1 := isNot f) case F => atoms f1
(f2 := isAnd f) case Pair(F,F) =>
- union(terms first f2, terms second f2)
+ union(atoms first f2, atoms second f2)
(f2 := isOr f) case Pair(F,F) =>
- union(terms first f2, terms second f2)
+ union(atoms first f2, atoms second f2)
empty()$Set(T)
-- one-step simplification helper function
@@ -357,7 +357,7 @@ PropositionalFormulaFunctions2(S,T): Public == Private where
Public == Type with
map: (S -> T, PropositionalFormula S) -> PropositionalFormula T
++ \spad{map(f,x)} returns a propositional formula where
- ++ all terms in \spad{x} have been replaced by the result
+ ++ all atoms in \spad{x} have been replaced by the result
++ of applying the function \spad{f} to them.
Private == add
macro FS == PropositionalFormula S