diff options
author | dos-reis <gdr@axiomatics.org> | 2010-04-08 08:43:08 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2010-04-08 08:43:08 +0000 |
commit | 4801946deb56530e2904c015dc80907614569373 (patch) | |
tree | fb0ee9be5bfc472afdd41b251076506e53d73bd6 /src/algebra | |
parent | b107db3eaba8069a8a47f2dc3f39b9858e954efa (diff) | |
download | open-axiom-4801946deb56530e2904c015dc80907614569373.tar.gz |
* algebra/boolean.spad.pamphlet (atoms$PropositionalFormula):
Rename from terms.
Diffstat (limited to 'src/algebra')
-rw-r--r-- | src/algebra/boolean.spad.pamphlet | 14 |
1 files changed, 7 insertions, 7 deletions
diff --git a/src/algebra/boolean.spad.pamphlet b/src/algebra/boolean.spad.pamphlet index b556b37b..a87b4c9b 100644 --- a/src/algebra/boolean.spad.pamphlet +++ b/src/algebra/boolean.spad.pamphlet @@ -270,8 +270,8 @@ PropositionalFormulaFunctions1(T): Public == Private where Public == Type with dual: PropositionalFormula T -> PropositionalFormula T ++ \spad{dual f} returns the dual of the proposition \spad{f}. - terms: PropositionalFormula T -> Set T - ++ \spad{terms f} ++ returns the set of terms appearing in + atoms: PropositionalFormula T -> Set T + ++ \spad{atoms f} ++ returns the set of atoms appearing in ++ the formula \spad{f}. simplify: PropositionalFormula T -> PropositionalFormula T ++ \spad{simplify f} returns a formula logically equivalent @@ -291,13 +291,13 @@ PropositionalFormulaFunctions1(T): Public == Private where conjunction(dual first f2, dual second f2) error "formula contains `equiv' or `implies'" - terms f == + atoms f == (t := isAtom f) case T => { t } - (f1 := isNot f) case F => terms f1 + (f1 := isNot f) case F => atoms f1 (f2 := isAnd f) case Pair(F,F) => - union(terms first f2, terms second f2) + union(atoms first f2, atoms second f2) (f2 := isOr f) case Pair(F,F) => - union(terms first f2, terms second f2) + union(atoms first f2, atoms second f2) empty()$Set(T) -- one-step simplification helper function @@ -357,7 +357,7 @@ PropositionalFormulaFunctions2(S,T): Public == Private where Public == Type with map: (S -> T, PropositionalFormula S) -> PropositionalFormula T ++ \spad{map(f,x)} returns a propositional formula where - ++ all terms in \spad{x} have been replaced by the result + ++ all atoms in \spad{x} have been replaced by the result ++ of applying the function \spad{f} to them. Private == add macro FS == PropositionalFormula S |