From 4801946deb56530e2904c015dc80907614569373 Mon Sep 17 00:00:00 2001
From: dos-reis <gdr@axiomatics.org>
Date: Thu, 8 Apr 2010 08:43:08 +0000
Subject: 	* algebra/boolean.spad.pamphlet (atoms$PropositionalFormula): 
 Rename from terms.

---
 src/algebra/boolean.spad.pamphlet | 14 +++++++-------
 1 file changed, 7 insertions(+), 7 deletions(-)

(limited to 'src/algebra')

diff --git a/src/algebra/boolean.spad.pamphlet b/src/algebra/boolean.spad.pamphlet
index b556b37b..a87b4c9b 100644
--- a/src/algebra/boolean.spad.pamphlet
+++ b/src/algebra/boolean.spad.pamphlet
@@ -270,8 +270,8 @@ PropositionalFormulaFunctions1(T): Public == Private where
   Public == Type with
     dual: PropositionalFormula T -> PropositionalFormula T
       ++ \spad{dual f} returns the dual of the proposition \spad{f}.
-    terms: PropositionalFormula T -> Set T
-      ++ \spad{terms f} ++ returns the set of terms appearing in
+    atoms: PropositionalFormula T -> Set T
+      ++ \spad{atoms f} ++ returns the set of atoms appearing in
       ++ the formula \spad{f}.
     simplify: PropositionalFormula T -> PropositionalFormula T
       ++ \spad{simplify f} returns a formula logically equivalent
@@ -291,13 +291,13 @@ PropositionalFormulaFunctions1(T): Public == Private where
          conjunction(dual first f2, dual second f2)
       error "formula contains `equiv' or `implies'"
 
-    terms f ==
+    atoms f ==
       (t := isAtom f) case T => { t }
-      (f1 := isNot f) case F => terms f1
+      (f1 := isNot f) case F => atoms f1
       (f2 := isAnd f) case Pair(F,F) =>
-         union(terms first f2, terms second f2)
+         union(atoms first f2, atoms second f2)
       (f2 := isOr f) case Pair(F,F) =>
-         union(terms first f2, terms second f2)
+         union(atoms first f2, atoms second f2)
       empty()$Set(T)
 
     -- one-step simplification helper function
@@ -357,7 +357,7 @@ PropositionalFormulaFunctions2(S,T): Public == Private where
   Public == Type with
     map: (S -> T, PropositionalFormula S) -> PropositionalFormula T
       ++ \spad{map(f,x)} returns a propositional formula where
-      ++ all terms in \spad{x} have been replaced by the result
+      ++ all atoms in \spad{x} have been replaced by the result
       ++ of applying the function \spad{f} to them.
   Private == add
     macro FS == PropositionalFormula S
-- 
cgit v1.2.3