aboutsummaryrefslogtreecommitdiff
path: root/src/algebra
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2011-03-13 03:43:50 +0000
committerdos-reis <gdr@axiomatics.org>2011-03-13 03:43:50 +0000
commit11eebf207528f86dfa4556be3b2cc7cba57244a6 (patch)
tree17c1ed9132ec874b14d2dcd137ac16a91e7a5b27 /src/algebra
parent6c75a87d8ee00d48a0f5703aa9c86591078a50d3 (diff)
downloadopen-axiom-11eebf207528f86dfa4556be3b2cc7cba57244a6.tar.gz
* src/algebra/: Systematically use not zero? when comparing for
equality with 0.
Diffstat (limited to 'src/algebra')
-rw-r--r--src/algebra/allfact.spad.pamphlet2
-rw-r--r--src/algebra/clifford.spad.pamphlet2
-rw-r--r--src/algebra/eigen.spad.pamphlet2
-rw-r--r--src/algebra/ffnb.spad.pamphlet2
-rw-r--r--src/algebra/fspace.spad.pamphlet4
-rw-r--r--src/algebra/gaussfac.spad.pamphlet2
-rw-r--r--src/algebra/gaussian.spad.pamphlet4
-rw-r--r--src/algebra/gdpoly.spad.pamphlet2
-rw-r--r--src/algebra/geneez.spad.pamphlet8
-rw-r--r--src/algebra/ghensel.spad.pamphlet4
-rw-r--r--src/algebra/groebsol.spad.pamphlet2
-rw-r--r--src/algebra/ideal.spad.pamphlet8
-rw-r--r--src/algebra/idecomp.spad.pamphlet8
-rw-r--r--src/algebra/leadcdet.spad.pamphlet2
-rw-r--r--src/algebra/lingrob.spad.pamphlet4
-rw-r--r--src/algebra/listgcd.spad.pamphlet4
-rw-r--r--src/algebra/mfinfact.spad.pamphlet10
-rw-r--r--src/algebra/moddfact.spad.pamphlet2
-rw-r--r--src/algebra/modgcd.spad.pamphlet2
-rw-r--r--src/algebra/modmon.spad.pamphlet2
-rw-r--r--src/algebra/multfact.spad.pamphlet6
-rw-r--r--src/algebra/multsqfr.spad.pamphlet2
-rw-r--r--src/algebra/npcoef.spad.pamphlet4
-rw-r--r--src/algebra/numsolve.spad.pamphlet2
-rw-r--r--src/algebra/pgcd.spad.pamphlet4
-rw-r--r--src/algebra/poly.spad.pamphlet6
-rw-r--r--src/algebra/qalgset.spad.pamphlet2
-rw-r--r--src/algebra/smith.spad.pamphlet2
-rw-r--r--src/algebra/syssolp.spad.pamphlet2
-rw-r--r--src/algebra/twofact.spad.pamphlet8
-rw-r--r--src/algebra/unifact.spad.pamphlet4
31 files changed, 59 insertions, 59 deletions
diff --git a/src/algebra/allfact.spad.pamphlet b/src/algebra/allfact.spad.pamphlet
index c45d662c..7d412271 100644
--- a/src/algebra/allfact.spad.pamphlet
+++ b/src/algebra/allfact.spad.pamphlet
@@ -171,7 +171,7 @@ MPolyCatRationalFunctionFactorizer(E,OV,R,PRF) : C == T
ground? g => g
rf:PRF:=0$PRF
ug:=univariate(g,x)
- while ug~=0 repeat
+ while not zero? ug repeat
rf:=rf+pushdterm(ug,x)
ug := reductum ug
rf
diff --git a/src/algebra/clifford.spad.pamphlet b/src/algebra/clifford.spad.pamphlet
index 262afa86..8e85a25d 100644
--- a/src/algebra/clifford.spad.pamphlet
+++ b/src/algebra/clifford.spad.pamphlet
@@ -389,7 +389,7 @@ CliffordAlgebra(n, K, Q): T == Impl where
c = 1 => be
c::Ex * be
coerce(x): Ex ==
- tl := [coerceMonom(x.i,i) for i in 0..dim-1 | x.i~=0]
+ tl := [coerceMonom(x.i,i) for i in 0..dim-1 | not zero? x.i]
null tl => "0"::Ex
reduce("+", tl)
diff --git a/src/algebra/eigen.spad.pamphlet b/src/algebra/eigen.spad.pamphlet
index 9cab7430..db92f178 100644
--- a/src/algebra/eigen.spad.pamphlet
+++ b/src/algebra/eigen.spad.pamphlet
@@ -137,7 +137,7 @@ EigenPackage(R) : C == T
tff(p:SUF,x:SE) : F ==
degree p=0 => leadingCoefficient p
r:F:=0$F
- while p~=0 repeat
+ while not zero? p repeat
r:=r+fft(p,x)
p := reductum p
r
diff --git a/src/algebra/ffnb.spad.pamphlet b/src/algebra/ffnb.spad.pamphlet
index 007f1efd..95b5c316 100644
--- a/src/algebra/ffnb.spad.pamphlet
+++ b/src/algebra/ffnb.spad.pamphlet
@@ -236,7 +236,7 @@ InnerNormalBasisFieldFunctions(GF): Exports == Implementation where
else erg:VGF:=plist.(first(l))
i:SI:=k
for j in rest(l) repeat
- if j~=0 then erg:=erg *$$ qPot(plist.j,i)$$
+ if not zero? j then erg:=erg *$$ qPot(plist.j,i)$$
i:=i+k
erg
diff --git a/src/algebra/fspace.spad.pamphlet b/src/algebra/fspace.spad.pamphlet
index 30c6fccd..684448f0 100644
--- a/src/algebra/fspace.spad.pamphlet
+++ b/src/algebra/fspace.spad.pamphlet
@@ -691,14 +691,14 @@ FunctionSpace(R: SetCategory): Category == Definition where
u := third l
arg := argument k
ans:% := 0
- if (not member?(u,done)) and (ans := differentiate(u,x))~=0 then
+ if (not member?(u,done)) and not zero?(ans := differentiate(u,x)) then
ans := ans * kernel(opdiff,
[subst(expr, [kd], [kernel(opdiff, [first l, gg, gg])]),
gg, u])
done := concat(gg, done)
is?(k, opdiff) => ans + diffdiff0(arg, x, expr, k, done)
for i in minIndex arg .. maxIndex arg for b in arg repeat
- if (not member?(b,done)) and (bp:=differentiate(b,x))~=0 then
+ if (not member?(b,done)) and not zero?(bp:=differentiate(b,x)) then
g := symsub(gendiff, i)::%
ans := ans + bp * kernel(opdiff, [subst(expr, [kd],
[kernel(opdiff, [substArg(op, arg, i, g), gg, u])]), g, b])
diff --git a/src/algebra/gaussfac.spad.pamphlet b/src/algebra/gaussfac.spad.pamphlet
index bb4cb963..79d32551 100644
--- a/src/algebra/gaussfac.spad.pamphlet
+++ b/src/algebra/gaussfac.spad.pamphlet
@@ -180,7 +180,7 @@ GaussianFactorizationPackage() : C == T
prime?(n)$IntegerPrimesPackage(Z) => true
re : Z := real a
im : Z := imag a
- re~=0 and im~=0 => false
+ not zero? re and not zero? im => false
p : Z := abs(re+im) -- a is of the form p, -p, %i*p or -%i*p
p rem 4 ~= 3 => false
-- return-value true, if p is a rational prime,
diff --git a/src/algebra/gaussian.spad.pamphlet b/src/algebra/gaussian.spad.pamphlet
index d8ac1583..44e9b918 100644
--- a/src/algebra/gaussian.spad.pamphlet
+++ b/src/algebra/gaussian.spad.pamphlet
@@ -327,12 +327,12 @@ ComplexCategory(R:CommutativeRing): Category ==
xx := x * y1
x1 := real(xx) rem r
a := x1
- if x1~=0 and sizeLess?(r, 2 * x1) then
+ if not zero? x1 and sizeLess?(r, 2 * x1) then
a := x1 - r
if sizeLess?(x1, a) then a := x1 + r
x2 := imag(xx) rem r
b := x2
- if x2~=0 and sizeLess?(r, 2 * x2) then
+ if not zero? x2 and sizeLess?(r, 2 * x2) then
b := x2 - r
if sizeLess?(x2, b) then b := x2 + r
y1 := (complex(a, b) exquo y1)::%
diff --git a/src/algebra/gdpoly.spad.pamphlet b/src/algebra/gdpoly.spad.pamphlet
index 2a212926..e477aa04 100644
--- a/src/algebra/gdpoly.spad.pamphlet
+++ b/src/algebra/gdpoly.spad.pamphlet
@@ -148,7 +148,7 @@ GeneralDistributedMultivariatePolynomial(vl,R,E): public == private where
p := reductum p
for i in 1..n repeat
maxdeg.i := max(maxdeg.i, tdeg.i)
- [index(i:PositiveInteger) for i in 1..n | maxdeg.i~=0]
+ [index(i:PositiveInteger) for i in 1..n | not zero? maxdeg.i]
reorder(p: %,perm: List Integer):% ==
#perm ~= n => error "must be a complete permutation of all vars"
diff --git a/src/algebra/geneez.spad.pamphlet b/src/algebra/geneez.spad.pamphlet
index 3c449fe1..c3647b6c 100644
--- a/src/algebra/geneez.spad.pamphlet
+++ b/src/algebra/geneez.spad.pamphlet
@@ -96,7 +96,7 @@ GenExEuclid(R,BP) : C == T
exactquo(u:BP,v:BP,p:R):Union(BP,"failed") ==
invlcv:=modInverse(leadingCoefficient v,p)
r:=monicDivide(u,reduction(invlcv*v,p))
- reduction(r.remainder,p) ~=0 => "failed"
+ not zero? reduction(r.remainder,p) => "failed"
reduction(invlcv*r.quotient,p)
FP:=EuclideanModularRing(R,BP,R,reduction,merge,exactquo)
@@ -120,7 +120,7 @@ GenExEuclid(R,BP) : C == T
ftab:Vector L FP :=
map(reduceList(#1,lmod),table)$VectorFunctions2(List BP,List FP)
sln:L FP:=[0$FP for xx in ftab.1 ]
- for i in 0 .. d |(cc:=coefficient(err,i)) ~=0 repeat
+ for i in 0 .. d |not zero?(cc:=coefficient(err,i)) repeat
sln:=[slp+reduce(cc::BP,lmod)*pp
for pp in ftab.(i+1) for slp in sln]
nsol:=[f-lmodk*reduction(g::BP,lmod) for f in oldsol for g in sln]
@@ -165,7 +165,7 @@ GenExEuclid(R,BP) : C == T
-- Actually, there's no possibility of failure
d:=degree m
sln:L BP:=[0$BP for xx in table.1]
- for i in 0 .. d | coefficient(m,i)~=0 repeat
+ for i in 0 .. d | not zero? coefficient(m,i) repeat
sln:=[slp+coefficient(m,i)*pp
for pp in table.(i+1) for slp in sln]
sln
@@ -192,7 +192,7 @@ GenExEuclid(R,BP) : C == T
map(reduceList(#1,pmod),table)$VectorFunctions2(List BP,List FP)
lpolys:L BP:=table.(#table)
sln:L FP:=[0$FP for xx in ftab.1]
- for i in 0 .. d | coefficient(m,i)~=0 repeat
+ for i in 0 .. d | not zero? coefficient(m,i) repeat
sln:=[slp+reduce(coefficient(m,i)::BP,pmod)*pp
for pp in ftab.(i+1) for slp in sln]
soln:=[slp::BP for slp in sln]
diff --git a/src/algebra/ghensel.spad.pamphlet b/src/algebra/ghensel.spad.pamphlet
index baf7e85c..64ff2a89 100644
--- a/src/algebra/ghensel.spad.pamphlet
+++ b/src/algebra/ghensel.spad.pamphlet
@@ -63,7 +63,7 @@ GeneralHenselPackage(RP,TP):C == T where
exactquo(u:TP,v:TP,p:RP):Union(TP,"failed") ==
invlcv:=modInverse(leadingCoefficient v,p)
r:=monicDivide(u,reduction(invlcv*v,p))
- reduction(r.remainder,p) ~=0 => "failed"
+ not zero? reduction(r.remainder,p) => "failed"
reduction(invlcv*r.quotient,p)
FP:=EuclideanModularRing(RP,TP,RP,reduction,merge,exactquo)
@@ -112,7 +112,7 @@ GeneralHenselPackage(RP,TP):C == T where
fln = nfln and zero?(err:=poly-*/fln) => leave "finished"
fln := nfln
Modulus := prime*Modulus
- if constp~=0 then fln:=cons(constp,fln)
+ if not zero? constp then fln:=cons(constp,fln)
[fln,Modulus]
completeHensel(m:TP,tl1:List TP,prime:RP,bound:PI) ==
diff --git a/src/algebra/groebsol.spad.pamphlet b/src/algebra/groebsol.spad.pamphlet
index 2fb8161e..95af1daf 100644
--- a/src/algebra/groebsol.spad.pamphlet
+++ b/src/algebra/groebsol.spad.pamphlet
@@ -97,7 +97,7 @@ GroebnerSolve(lv,F,R) : C == T
then return "failed"
newlpol :=concat(redPol(g::DPoly,newlpol),newlpol)
rlvar:=rest rlvar
- else if redPol(f,newlpol)~=0 then return"failed"
+ else if not zero? redPol(f,newlpol) then return"failed"
newlpol
diff --git a/src/algebra/ideal.spad.pamphlet b/src/algebra/ideal.spad.pamphlet
index 311be81b..936b9d0c 100644
--- a/src/algebra/ideal.spad.pamphlet
+++ b/src/algebra/ideal.spad.pamphlet
@@ -174,7 +174,7 @@ PolynomialIdeals(F,Expon,VarSet,DPoly) : C == T
q=0$newPoly => 0$DPoly
dq:newExpon:=degree q
n:NNI:=selectfirst (dq)
- n~=0 => "failed"
+ not zero? n => "failed"
((g:=oldpoly reductum q) case "failed") => "failed"
monomial(leadingCoefficient q,selectsecond dq)$DPoly + (g::DPoly)
@@ -379,7 +379,7 @@ PolynomialIdeals(F,Expon,VarSet,DPoly) : C == T
vec2.i:=1
g:nPoly:=0$nPoly
pol:=0$P
- while f~=0 repeat
+ while not zero? f repeat
df:=degree(f-reductum f,lvint)
lcf:=leadingCoefficient f
pol:=pol+monompol(df,lcf,lvint)
@@ -400,7 +400,7 @@ PolynomialIdeals(F,Expon,VarSet,DPoly) : C == T
solsn:List P:=[]
for q in lf repeat
g:Polynomial F :=0
- while q~=0 repeat
+ while not zero? q repeat
dq:=degree q
lcq:=leadingCoefficient q
q:=reductum q
@@ -417,7 +417,7 @@ PolynomialIdeals(F,Expon,VarSet,DPoly) : C == T
empty? Idl => [0$DPoly] :: OutputForm
Idl :: OutputForm
- ideal(Id:List DPoly) :Ideal == [[f for f in Id|f~=0],false]
+ ideal(Id:List DPoly) :Ideal == [[f for f in Id|not zero? f],false]
groebnerIdeal(Id:List DPoly) : Ideal == [Id,true]
diff --git a/src/algebra/idecomp.spad.pamphlet b/src/algebra/idecomp.spad.pamphlet
index 8dd14b10..d5c5d4e4 100644
--- a/src/algebra/idecomp.spad.pamphlet
+++ b/src/algebra/idecomp.spad.pamphlet
@@ -153,7 +153,7 @@ IdealDecompositionPackage(vl,nv) : C == T -- take away nv, now doesn't
lf:=Id.first
ris:= generators(zeroRadComp(groebnerIdeal(Id.rest),truelist.rest))
ris:=cons(lf,ris)
- if pv~=0 then
+ if not zero? pv then
ris:=[(univariate(h,x)).pw for h in ris]
groebnerIdeal(groebner ris)
@@ -246,7 +246,7 @@ IdealDecompositionPackage(vl,nv) : C == T -- take away nv, now doesn't
pushdown(g:DPoly,x:OV) : DPoly ==
rf:DPoly:=0$DPoly
i:=position(x,lvint)
- while g~=0 repeat
+ while not zero? g repeat
g1:=reductum g
rf:=rf+pushdterm(g-g1,x,i)
g := g1
@@ -266,11 +266,11 @@ IdealDecompositionPackage(vl,nv) : C == T -- take away nv, now doesn't
rf:DPoly:=0$DPoly
g := f
xp := convert(x)@SE
- while g~=0 repeat
+ while not zero? g repeat
h:=lcm(trueden(denom leadingCoefficient g,xp),h)
g:=reductum g
f:=(h::F)*f
- while f~=0 repeat
+ while not zero? f repeat
g:=reductum f
rf:=rf+pushuterm(f-g,xp,x)
f:=g
diff --git a/src/algebra/leadcdet.spad.pamphlet b/src/algebra/leadcdet.spad.pamphlet
index 0c312914..7b7fb5a5 100644
--- a/src/algebra/leadcdet.spad.pamphlet
+++ b/src/algebra/leadcdet.spad.pamphlet
@@ -109,7 +109,7 @@ LeadingCoefDetermination(OV,E,Z,P) : C == T
for k in 1..(# lpol) repeat
lexp.k=0 => "next factor"
h:= checkpow(vl.k,c)
- if h ~=0 then
+ if not zero? h then
if h>lexp.k then return "failed"
lexp.k:=lexp.k-h
aux.i := aux.i*(lpol.k ** h)
diff --git a/src/algebra/lingrob.spad.pamphlet b/src/algebra/lingrob.spad.pamphlet
index 41956dea..95284786 100644
--- a/src/algebra/lingrob.spad.pamphlet
+++ b/src/algebra/lingrob.spad.pamphlet
@@ -215,7 +215,7 @@ LinGroebnerPackage(lv,F) : C == T
part:List HDPoly :=[]
for f in lr repeat
g:=x::HDPoly * f
- if redPo(g,mB).poly~=0 then part:=concat(g,part)
+ if not zero?(redPo(g,mB).poly) then part:=concat(g,part)
concat(part,intcompBasis(x,part,mB))
----- coordinate of f with respect to the basis B -----
@@ -223,7 +223,7 @@ LinGroebnerPackage(lv,F) : C == T
coord(f:HDPoly,B:List HDPoly) : VF ==
ndim := #B
vv:VF:=new(ndim,0$F)$VF
- while f~=0 repeat
+ while not zero? f repeat
rf := reductum f
lf := f-rf
lcf := leadingCoefficient f
diff --git a/src/algebra/listgcd.spad.pamphlet b/src/algebra/listgcd.spad.pamphlet
index fac17b6d..856e006b 100644
--- a/src/algebra/listgcd.spad.pamphlet
+++ b/src/algebra/listgcd.spad.pamphlet
@@ -78,7 +78,7 @@ HeuGcd (BP):C == T
--compute the height of a polynomial
height(f:BP):PI ==
k:PI:=1
- while f~=0 repeat
+ while not zero? f repeat
k:=max(k,abs(leadingCoefficient(f)@Z)::PI)
f:=reductum f
k
@@ -88,7 +88,7 @@ HeuGcd (BP):C == T
genpoly(dval:Z,value:PI):BP ==
d:=0$BP
val:=dval
- for i in 0.. while (val~=0) repeat
+ for i in 0.. while not zero? val repeat
val1:=negShiftz(val rem value,value)
d:= d+monomial(val1,i)
val:=(val-val1) quo value
diff --git a/src/algebra/mfinfact.spad.pamphlet b/src/algebra/mfinfact.spad.pamphlet
index 73483b86..bca79804 100644
--- a/src/algebra/mfinfact.spad.pamphlet
+++ b/src/algebra/mfinfact.spad.pamphlet
@@ -301,7 +301,7 @@ MultFiniteFactorize(OV,E,F,PG) : C == T
pushup(f:P,x:OV) :PG ==
ground? f => pushupconst((retract f)@R,x)
rr:PG:=0
- while f~=0 repeat
+ while not zero? f repeat
lf:=leadingMonomial f
cf:=pushupconst(leadingCoefficient f,x)
lvf:=variables lf
@@ -314,7 +314,7 @@ MultFiniteFactorize(OV,E,F,PG) : C == T
ground? g => ((retract g)@F)::R::P
rf:P:=0$P
ug:=univariate(g,x)
- while ug~=0 repeat
+ while not zero? ug repeat
cf:=monomial(1,degree ug)$R
rf:=rf+cf*pushdcoef(leadingCoefficient ug)
ug := reductum ug
@@ -324,7 +324,7 @@ MultFiniteFactorize(OV,E,F,PG) : C == T
pushupconst(r:R,x:OV):PG ==
ground? r => (retract r)@F ::PG
rr:PG:=0
- while r~=0 repeat
+ while not zero? r repeat
rr:=rr+monomial((leadingCoefficient r)::PG,x,degree r)$PG
r:=reductum r
rr
@@ -385,14 +385,14 @@ MultFiniteFactorize(OV,E,F,PG) : C == T
leadcomp1:=[retract eval(pol,lvar,lval) for pol in plist]
testp and or/[unit? epl for epl in leadcomp1] => range:=range+1
newm:SUP R:=completeEval(um,lvar,lval)
- degum ~= degree newm or minimumDegree newm ~=0 => range:=range+1
+ degum ~= degree newm or not zero? minimumDegree newm => range:=range+1
lffc1:=content newm
newm:=(newm exquo lffc1)::SUP R
testp and leadtest and not polCase(lffc1*clc,#plist,leadcomp1)
=> range:=range+1
Dnewm := differentiate newm
D2newm := map(differentiate, newm)
- degree(gcd [newm,Dnewm,D2newm])~=0 => range:=range+1
+ not zero? degree(gcd [newm,Dnewm,D2newm]) => range:=range+1
-- if R has Integer then luniv:=henselFact(newm,false)$
-- else
lcnm:F:=1
diff --git a/src/algebra/moddfact.spad.pamphlet b/src/algebra/moddfact.spad.pamphlet
index 5cb2893d..9cf3d902 100644
--- a/src/algebra/moddfact.spad.pamphlet
+++ b/src/algebra/moddfact.spad.pamphlet
@@ -79,7 +79,7 @@ ModularDistinctDegreeFactorizer(U):C == T where
exactquo(u:U,v:U,p:I):Union(U,"failed") ==
invlcv:=modInverse(leadingCoefficient v,p)
r:=monicDivide(u,reduction(invlcv*v,p))
- reduction(r.remainder,p) ~=0 => "failed"
+ not zero? reduction(r.remainder,p) => "failed"
reduction(invlcv*r.quotient,p)
EMR := EuclideanModularRing(Integer,U,Integer,
reduction,merge,exactquo)
diff --git a/src/algebra/modgcd.spad.pamphlet b/src/algebra/modgcd.spad.pamphlet
index b094a863..afe60ab5 100644
--- a/src/algebra/modgcd.spad.pamphlet
+++ b/src/algebra/modgcd.spad.pamphlet
@@ -205,7 +205,7 @@ InnerModularGcd(R,BP,pMod,nextMod):C == T
exactquo(u:BP,v:BP,p:R):Union(BP,"failed") ==
invlcv:=modInverse(leadingCoefficient v,p)
r:=monicDivide(u,reduction(invlcv*v,p))
- reduction(r.remainder,p) ~=0 => "failed"
+ not zero? reduction(r.remainder,p) => "failed"
reduction(invlcv*r.quotient,p)
diff --git a/src/algebra/modmon.spad.pamphlet b/src/algebra/modmon.spad.pamphlet
index cb60793e..94872e38 100644
--- a/src/algebra/modmon.spad.pamphlet
+++ b/src/algebra/modmon.spad.pamphlet
@@ -139,7 +139,7 @@ ModMonic(R,Rep): C == T
frobenius(a:%):% ==
aq:% := 0
- while a~=0 repeat
+ while not zero? a repeat
aq:= aq + leadingCoefficient(a)*frobeniusPower(degree a)
a := reductum a
aq
diff --git a/src/algebra/multfact.spad.pamphlet b/src/algebra/multfact.spad.pamphlet
index de704ea2..86293e50 100644
--- a/src/algebra/multfact.spad.pamphlet
+++ b/src/algebra/multfact.spad.pamphlet
@@ -182,7 +182,7 @@ InnerMultFact(OV,E,R,P) : C == T
"max"/[numberOfMonomials ff for ff in lum]
"max"/[+/[euclideanSize cc for i in 0..degree ff|
- (cc:= coefficient(ff,i))~=0] for ff in lum]
+ not zero? (cc:= coefficient(ff,i))] for ff in lum]
--- Choose the integer to reduce to univariate case ---
intChoose(um:USP,lvar:L OV,clc:R,plist:L P,ltry:L L R,
@@ -220,12 +220,12 @@ InnerMultFact(OV,E,R,P) : C == T
leadcomp1:=[retract eval(pol,lvar,lval) for pol in plist]
testp and or/[unit? epl for epl in leadcomp1] => range:=2*range
newm:BP:=completeEval(um,lvar,lval)
- degum ~= degree newm or minimumDegree newm ~=0 => range:=2*range
+ degum ~= degree newm or not zero? minimumDegree newm => range:=2*range
lffc1:=content newm
newm:=(newm exquo lffc1)::BP
testp and leadtest and not polCase(lffc1*clc,#plist,leadcomp1)
=> range:=2*range
- degree(gcd [newm,differentiate(newm)])~=0 => range:=2*range
+ not zero? degree(gcd [newm,differentiate(newm)]) => range:=2*range
luniv:=ufactor(newm)
lunivf:= factors luniv
lffc1:R:=retract(unit luniv)@R * lffc1
diff --git a/src/algebra/multsqfr.spad.pamphlet b/src/algebra/multsqfr.spad.pamphlet
index 6c54e72c..f1cd64f4 100644
--- a/src/algebra/multsqfr.spad.pamphlet
+++ b/src/algebra/multsqfr.spad.pamphlet
@@ -206,7 +206,7 @@ MultivariateSquareFree (E,OV,R,P) : C == T where
makeFR(unit result,append(result1,factorList result))
ldeg:=degree(f,lvar) --- general case ---
- m:="min"/[j for j in ldeg|j~=0]
+ m:="min"/[j for j in ldeg| not zero? j]
i:Z:=1
for j in ldeg while j>m repeat i:=i+1
x:=lvar.i
diff --git a/src/algebra/npcoef.spad.pamphlet b/src/algebra/npcoef.spad.pamphlet
index 47710d88..a1ada373 100644
--- a/src/algebra/npcoef.spad.pamphlet
+++ b/src/algebra/npcoef.spad.pamphlet
@@ -104,7 +104,7 @@ NPCoef(BP,E,OV,R,P) : C == T where
#termlist=1 =>
vterm:=termlist.first
for elterm in vterm while doit<2 repeat
- (cu1:=elterm.pcoef)~=0 => cfu:=cu1*cfu
+ not zero?(cu1:=elterm.pcoef) => cfu:=cu1*cfu
doit:=doit+1
poselt:=position(elterm,vterm):NNI
doit=2 or (pp:=tterm.coefu exquo cfu) case "failed" => "failed"
@@ -148,7 +148,7 @@ NPCoef(BP,E,OV,R,P) : C == T where
for celt in ctdet repeat
if celt.cfpos.expt=cfexp then
celt.cfpos.pcoef:=cfcoef
- if (and/[cc.pcoef ~=0 for cc in celt]) then
+ if (and/[not zero? cc.pcoef for cc in celt]) then
k:=position(celt,ctdet):NNI
lterase:=cons(k,lterase)
cterm.coefu:=(cterm.coefu - */[cc.pcoef for cc in celt])
diff --git a/src/algebra/numsolve.spad.pamphlet b/src/algebra/numsolve.spad.pamphlet
index 04935b6b..1c7a516c 100644
--- a/src/algebra/numsolve.spad.pamphlet
+++ b/src/algebra/numsolve.spad.pamphlet
@@ -169,7 +169,7 @@ InnerNumericFloatSolvePackage(K,F,Par): Cat == Cap where
if lq~=[] then
gb:=GroebnerInternalPackage(K,DirectProduct(#lv,NNI),OV,dmp)
partRes:=[pr for pr in partRes|
- and/[(redPol(fq,pr pretend List(dmp))$gb) ~=0
+ and/[not zero?(redPol(fq,pr pretend List(dmp))$gb)
for fq in lq]]
-- select the components in "generic" form
diff --git a/src/algebra/pgcd.spad.pamphlet b/src/algebra/pgcd.spad.pamphlet
index 2caf53de..eb38b2c1 100644
--- a/src/algebra/pgcd.spad.pamphlet
+++ b/src/algebra/pgcd.spad.pamphlet
@@ -183,7 +183,7 @@ PolynomialGcdPackage(E,OV,R,P):C == T where
(gd1,gd2):=(l,l)
ul:=completeEval(l,lvar1,lval)
dl:=degree ul
- if degree gcd(ul,differentiate ul) ~=0 then
+ if not zero? degree gcd(ul,differentiate ul) then
newchoice:=good(l,lvar1,ltry)
ul:=newchoice.upol
ltry:=newchoice.inval
@@ -195,7 +195,7 @@ PolynomialGcdPackage(E,OV,R,P):C == T where
d:SUP:=gcd(cons(ul,ulist))
if degree d =0 then return gd1
lquo:=(ul exquo d)::SUP
- if degree lquo ~=0 then
+ if not zero? degree lquo then
lgcd:=gcd(cons(leadingCoefficient l,lcpol))
(gdl:=lift(l,d,lquo,lgcd,lvar1,ldeg,lval)) case "failed" =>
return notCoprime(g,p2,ldeg,lvar1,ltry)
diff --git a/src/algebra/poly.spad.pamphlet b/src/algebra/poly.spad.pamphlet
index 71a7d8df..b86755a0 100644
--- a/src/algebra/poly.spad.pamphlet
+++ b/src/algebra/poly.spad.pamphlet
@@ -902,7 +902,7 @@ UnivariatePolynomialSquareFree(RC:IntegralDomain,P):C == T
makeFR(u,[["sqfr",c,1]])
i:NonNegativeInteger:=0; lffe:List FF:=[]
lcp := leadingCoefficient p
- while degree(ci)~=0 repeat
+ while not zero? degree(ci) repeat
ci:=(ci exquo pi)::P
di:=(di exquo pi)::P - differentiate(ci)
pi:=gcd(ci,di)
@@ -924,7 +924,7 @@ UnivariatePolynomialSquareFree(RC:IntegralDomain,P):C == T
di := (p exquo ci)::P
i:NonNegativeInteger:=0; lffe:List FF:=[]
dunit : P := 1
- while degree(di)~=0 repeat
+ while not zero? degree(di) repeat
diprev := di
di := gcd(ci,di)
ci:=(ci exquo di)::P
@@ -1054,7 +1054,7 @@ PolynomialSquareFree(VarSet:OrderedSet,E,RC:GcdDomain,P):C == T where
squareFree(p:P) ==
mv:=mainVariable p
mv case "failed" => makeFR(p,[])$Factored(P)
- characteristic$RC ~=0 => finSqFr(p,variables p)
+ not zero?(characteristic$RC) => finSqFr(p,variables p)
up:=univariate(p,mv)
cont := content up
up := (up exquo cont)::SUP
diff --git a/src/algebra/qalgset.spad.pamphlet b/src/algebra/qalgset.spad.pamphlet
index f93f1ef0..4679a5c5 100644
--- a/src/algebra/qalgset.spad.pamphlet
+++ b/src/algebra/qalgset.spad.pamphlet
@@ -151,7 +151,7 @@ QuasiAlgebraicSet(R, Var,Expon,Dpoly) : C == T
q=0$newPoly => 0$Dpoly
dq:newExpon:=degree q
n:NNI:=selectfirst (dq)
- n~=0 => "failed"
+ not zero? n => "failed"
((g:=oldpoly reductum q) case "failed") => "failed"
monomial(leadingCoefficient q,selectsecond dq)$Dpoly + (g::Dpoly)
diff --git a/src/algebra/smith.spad.pamphlet b/src/algebra/smith.spad.pamphlet
index 97fc3b76..34b8f55b 100644
--- a/src/algebra/smith.spad.pamphlet
+++ b/src/algebra/smith.spad.pamphlet
@@ -157,7 +157,7 @@ SmithNormalForm(R,Row,Col,M) : Exports == Implementation where
lastStep(sf : SmithForm) : SmithForm ==
m:=sf.Smith
m1:=min(nrows m,ncols m)
- for i in 1..m1 while (mii:=m(i,i)) ~=0 repeat
+ for i in 1..m1 while not zero?(mii:=m(i,i)) repeat
for j in i+1..m1 repeat
if (m(j,j) exquo mii) case "failed" then return
lastStep(ijDivide(sf,i,j))
diff --git a/src/algebra/syssolp.spad.pamphlet b/src/algebra/syssolp.spad.pamphlet
index 8fd97610..3fb9ba0a 100644
--- a/src/algebra/syssolp.spad.pamphlet
+++ b/src/algebra/syssolp.spad.pamphlet
@@ -153,7 +153,7 @@ SystemSolvePackage(R): Cat == Cap where
if lq~=[] then
gb:=GroebnerInternalPackage(P R,DirectProduct(#lv,NNI),OV,dmp)
parRes:=[pr for pr in parRes|
- and/[(redPol(fq,pr pretend List(dmp))$gb) ~=0
+ and/[not zero?(redPol(fq,pr pretend List(dmp))$gb)
for fq in lq]]
[[retract pushdown(pf,lvv)$push for pf in pr] for pr in parRes]
diff --git a/src/algebra/twofact.spad.pamphlet b/src/algebra/twofact.spad.pamphlet
index fb560b20..fd51789d 100644
--- a/src/algebra/twofact.spad.pamphlet
+++ b/src/algebra/twofact.spad.pamphlet
@@ -43,7 +43,7 @@ NormRetractPackage(F, ExtF, SUEx, ExtP, n):C == T where
Frobenius(ff:ExtP):ExtP ==
fft:ExtP:=0
- while ff~=0 repeat
+ while not zero? ff repeat
fft:=fft + monomial(map(Frobenius, leadingCoefficient ff),
degree ff)
ff:=reductum ff
@@ -230,7 +230,7 @@ TwoFactorize(F) : C == T
i:=i+1
zero? elt(lcm, vval) => "next value"
umv := map(elt(#1,vval), m)$UPCF2(R, P, F, R)
- degree(gcd(umv,differentiate umv))~=0 => "next val"
+ not zero? degree(gcd(umv,differentiate umv)) => "next val"
n := 1
look := false
extField:=FiniteFieldExtension(F,n)
@@ -238,7 +238,7 @@ TwoFactorize(F) : C == T
TP:=SparseUnivariatePolynomial SUEx
mm:TP:=0
m1:=m
- while m1~=0 repeat
+ while not zero? m1 repeat
mm:=mm+monomial(map(coerce,leadingCoefficient m1)$UPCF2(F,R,
extField,SUEx),degree m1)
m1:=reductum m1
@@ -253,7 +253,7 @@ TwoFactorize(F) : C == T
i:=i+1
elt(lcmm,val)=0 => "next value"
umex := map(elt(#1,val), mm)$UPCF2(SUEx, TP, extField, SUEx)
- degree(gcd(umex,differentiate umex))~=0 => "next val"
+ not zero? degree(gcd(umex,differentiate umex)) => "next val"
look:=false
prime:SUEx:=monomial(1,1)-monomial(val,0)
fumex:=factor(umex)$DistinctDegreeFactorize(extField,SUEx)
diff --git a/src/algebra/unifact.spad.pamphlet b/src/algebra/unifact.spad.pamphlet
index f3437a81..119ee5d4 100644
--- a/src/algebra/unifact.spad.pamphlet
+++ b/src/algebra/unifact.spad.pamphlet
@@ -173,7 +173,7 @@ UnivariateFactorize(ZP) : public == private where
q:=nextPrime(q)$IntegerPrimesPackage(Z) pretend PI
(rr:=lcm rem q) = 0$Z => "next prime"
disc:=gcd(m,differentiate m,q)
- (degree disc)~=0 => "next prime"
+ not zero?(degree disc) => "next prime"
k := k+1
newdd := ddFact(m,q)
((n := numFactors(newdd)) < 9) =>
@@ -215,7 +215,7 @@ UnivariateFactorize(ZP) : public == private where
d,d2: Z
d := coefficient(m,1)**2-4*coefficient(m,0)*coefficient(m,2)
d2 := sqroot(d)
- (d-d2**2)~=0 => [m]
+ not zero?(d-d2**2) => [m]
alpha: Z := coefficient(m,1)+d2
beta: Z := 2*coefficient(m,2)
d := gcd(alpha,beta)