aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/multfact.spad.pamphlet
blob: de704ea244c23b9e0c42535e93b83cc6d0a62009 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra multfact.spad}
\author{Patrizia Gianni}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package INNMFACT InnerMultFact}
<<package INNMFACT InnerMultFact>>=
)abbrev package INNMFACT InnerMultFact
++ Author: P. Gianni
++ Date Created: 1983
++ Date Last Updated: Sept. 1990
++ Additional Comments: JHD Aug 1997
++ Basic Functions:
++ Related Constructors: MultivariateFactorize, AlgebraicMultFact
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++   This is an inner package for factoring multivariate polynomials
++ over various coefficient domains in characteristic 0.
++ The univariate factor operation is passed as a parameter.
++ Multivariate hensel lifting is used to lift the univariate
++ factorization

-- Both exposed functions call mFactor. This deals with issues such as 
-- monomial factors, contents, square-freeness etc., then calls intfact.
-- This uses intChoose to find a "good" evaluation and factorise the 
-- corresponding univariate, and then uses MultivariateLifting to find
-- the multivariate factors.

InnerMultFact(OV,E,R,P) : C == T
 where
  R          :   Join(EuclideanDomain, CharacteristicZero)
                      -- with factor on R[x]
  OV         :   OrderedSet
  E          :   OrderedAbelianMonoidSup
  P          :   PolynomialCategory(R,E,OV)
  BP         ==> SparseUnivariatePolynomial R
  UFactor    ==> (BP -> Factored BP)
  Z            ==> Integer
  MParFact     ==> Record(irr:P,pow:Z)
  USP          ==> SparseUnivariatePolynomial P
  SUParFact    ==> Record(irr:USP,pow:Z)
  SUPFinalFact ==> Record(contp:R,factors:List SUParFact)
  MFinalFact   ==> Record(contp:R,factors:List MParFact)

               --  contp   =  content,
               --  factors =  List of irreducible factors with exponent
  L          ==> List

  C == with
    factor      :      (P,UFactor)    ->  Factored P
      ++ factor(p,ufact) factors the multivariate polynomial p
      ++ by specializing variables and calling the univariate
      ++ factorizer ufact.
    factor      :      (USP,UFactor)    ->  Factored USP
      ++ factor(p,ufact) factors the multivariate polynomial p
      ++ by specializing variables and calling the univariate
      ++ factorizer ufact. p is represented as a univariate
      ++ polynomial with multivariate coefficients.

  T == add

    NNI       ==> NonNegativeInteger

    LeadFact  ==> Record(polfac:L P,correct:R,corrfact:L BP)
    ContPrim  ==> Record(cont:P,prim:P)
    ParFact   ==> Record(irr:BP,pow:Z)
    FinalFact ==> Record(contp:R,factors:L ParFact)
    NewOrd    ==> Record(npol:USP,nvar:L OV,newdeg:L NNI)
    pmod:R   :=  (prevPrime(2**26)$IntegerPrimesPackage(Integer))::R

    import GenExEuclid(R,BP)
    import MultivariateLifting(E,OV,R,P)
    import FactoringUtilities(E,OV,R,P)
    import LeadingCoefDetermination(OV,E,R,P)
    Valuf ==> Record(inval:L L R,unvfact:L BP,lu:R,complead:L R)
    UPCF2 ==> UnivariatePolynomialCategoryFunctions2

                   ----  Local Functions  ----
    mFactor   :            (P,UFactor)           ->  MFinalFact
    supFactor :           (USP,UFactor)          ->  SUPFinalFact
    mfconst   :      (USP,L OV,L NNI,UFactor)    -> L USP
    mfpol     :      (USP,L OV,L NNI,UFactor)    -> L USP
    monicMfpol:      (USP,L OV,L NNI,UFactor)    -> L USP
    varChoose :           (P,L OV,L NNI)         -> NewOrd
    simplify  :       (P,L OV,L NNI,UFactor)     -> MFinalFact
    intChoose :  (USP,L OV,R,L P,L L R,UFactor)  -> Union(Valuf,"failed")
    intfact   : (USP,L OV,L NNI,MFinalFact,L L R,UFactor) -> L USP
    pretest   :         (P,NNI,L OV,L R)         -> FinalFact
    checkzero :            (USP,BP)              -> Boolean
    localNorm :               L BP               -> Z

    convertPUP(lfg:MFinalFact): SUPFinalFact ==
      [lfg.contp,[[lff.irr ::USP,lff.pow]$SUParFact
                    for lff in lfg.factors]]$SUPFinalFact

    -- intermediate routine if an SUP was passed in.
    supFactor(um:USP,ufactor:UFactor) : SUPFinalFact ==
      ground?(um) => convertPUP(mFactor(ground um,ufactor))
      lvar:L OV:= "setUnion"/[variables cf for cf in coefficients um]
      empty? lvar => -- the polynomial is univariate
        umv:= map(ground,um)$UPCF2(P,USP,R,BP)
        lfact:=ufactor umv
        [retract unit lfact,[[map(coerce,ff.factor)$UPCF2(R,BP,P,USP),
           ff.exponent] for ff in factors lfact]]$SUPFinalFact
      lcont:P
      lf:L USP
      flead : SUPFinalFact:=[0,empty()]$SUPFinalFact
      factorlist:L SUParFact :=empty()

      mdeg :=minimumDegree um     ---- is the Mindeg > 0? ----
      if positive? mdeg then
        f1:USP:=monomial(1,mdeg)
        um:=(um exquo f1)::USP
        factorlist:=cons([monomial(1,1),mdeg],factorlist)
        if degree um=0 then return
          lfg:=convertPUP mFactor(ground um, ufactor)
          [lfg.contp,append(factorlist,lfg.factors)]
      uum:=unitNormal um
      um :=uum.canonical
      sqfacs := squareFree(um)$MultivariateSquareFree(E,OV,R,P)
      lcont :=  ground(uum.unit * unit sqfacs)
                                   ----  Factorize the content  ----
      flead:=convertPUP mFactor(lcont,ufactor)
      factorlist:=append(flead.factors,factorlist)
                               ----  Make the polynomial square-free  ----
      sqqfact:=factors sqfacs
                        ---  Factorize the primitive square-free terms ---
      for fact in sqqfact repeat
        ffactor:USP:=fact.factor
        ffexp:=fact.exponent
        zero? degree ffactor =>
          lfg:=mFactor(ground ffactor,ufactor)
          lcont:=lfg.contp * lcont
          factorlist := append(factorlist,
             [[lff.irr ::USP,lff.pow * ffexp]$SUParFact
                       for lff in lfg.factors])
        coefs := coefficients ffactor
        ldeg:= ["max"/[degree(fc,xx) for fc in coefs] for xx in lvar]
        lf :=
          ground?(leadingCoefficient ffactor) =>
             mfconst(ffactor,lvar,ldeg,ufactor)
          mfpol(ffactor,lvar,ldeg,ufactor)
        auxfl:=[[lfp,ffexp]$SUParFact  for lfp in lf]
        factorlist:=append(factorlist,auxfl)
      lcfacs := */[leadingCoefficient leadingCoefficient(f.irr)**((f.pow)::NNI)
                           for f in factorlist]
      [(leadingCoefficient leadingCoefficient(um) exquo lcfacs)::R,
                     factorlist]$SUPFinalFact

    factor(um:USP,ufactor:UFactor):Factored USP ==
      flist := supFactor(um,ufactor)
      (flist.contp):: P :: USP *
        (*/[primeFactor(u.irr,u.pow) for u in flist.factors])

    checkzero(u:USP,um:BP) : Boolean ==
      u=0 => um =0
      um = 0 => false
      degree u = degree um => checkzero(reductum u, reductum um)
      false
              ---  Choose the variable of less degree  ---
    varChoose(m:P,lvar:L OV,ldeg:L NNI) : NewOrd ==
      k:="min"/[d for d in ldeg]
      k=degree(m,first lvar) =>
                             [univariate(m,first lvar),lvar,ldeg]$NewOrd
      i:=position(k,ldeg)
      x:OV:=lvar.i
      ldeg:=cons(k,delete(ldeg,i))
      lvar:=cons(x,delete(lvar,i))
      [univariate(m,x),lvar,ldeg]$NewOrd

    localNorm(lum: L BP): Z ==
      R is AlgebraicNumber =>
        "max"/[numberOfMonomials ff for ff in lum]

      "max"/[+/[euclideanSize cc for i in 0..degree ff|
                (cc:= coefficient(ff,i))~=0] for ff in lum]

          ---  Choose the integer to reduce to univariate case  ---
    intChoose(um:USP,lvar:L OV,clc:R,plist:L P,ltry:L L R,
                                 ufactor:UFactor) : Union(Valuf,"failed") ==
      -- declarations
      degum:NNI := degree um
      nvar1:=#lvar
      range:NNI:=5
      unifact:L BP
      ctf1 : R := 1
      testp:Boolean :=             -- polynomial leading coefficient
        empty? plist => false
        true
      leadcomp,leadcomp1 : L R
      leadcomp:=leadcomp1:=empty()
      nfatt:NNI := degum+1
      lffc:R:=1
      lffc1:=lffc
      newunifact : L BP:=empty()
      leadtest:=true --- the lc test with polCase has to be performed
      int:L R:=empty()

   --  New sets of integers are chosen to reduce the multivariate problem to
   --  a univariate one, until we find twice the
   --  same (and minimal) number of "univariate" factors:
   --  the set smaller in modulo is chosen.
   --  Note that there is no guarantee that this is the truth:
   --  merely the closest approximation we have found!

      while true repeat
       testp and #ltry>10 => return "failed"
       lval := [ ran(range) for i in 1..nvar1]
       member?(lval,ltry) => range:=2*range
       ltry := cons(lval,ltry)
       leadcomp1:=[retract eval(pol,lvar,lval) for pol in plist]
       testp and or/[unit? epl for epl in leadcomp1] => range:=2*range
       newm:BP:=completeEval(um,lvar,lval)
       degum ~= degree newm or minimumDegree newm ~=0 => range:=2*range
       lffc1:=content newm
       newm:=(newm exquo lffc1)::BP
       testp and leadtest and not polCase(lffc1*clc,#plist,leadcomp1)
                             => range:=2*range
       degree(gcd [newm,differentiate(newm)])~=0 => range:=2*range
       luniv:=ufactor(newm)
       lunivf:= factors luniv
       lffc1:R:=retract(unit luniv)@R * lffc1
       nf:= #lunivf

       nf=0 or nf>nfatt => "next values"      ---  pretest failed ---

                        --- the univariate polynomial is irreducible ---
       if nf=1 then leave (unifact:=[newm])

   --  the new integer give the same number of factors
       nfatt = nf =>
       -- if this is the first univariate factorization with polCase=true
       -- or if the last factorization has smaller norm and satisfies
       -- polCase
         if leadtest or
           ((localNorm unifact > localNorm [ff.factor for ff in lunivf])
             and (not testp or polCase(lffc1*clc,#plist,leadcomp1))) then
                unifact:=[uf.factor for uf in lunivf]
                int:=lval
                lffc:=lffc1
                if testp then leadcomp:=leadcomp1
         leave "foundit"

   --  the first univariate factorization, inizialize
       nfatt > degum =>
         unifact:=[uf.factor for uf in lunivf]
         lffc:=lffc1
         if testp then leadcomp:=leadcomp1
         int:=lval
         leadtest := false
         nfatt := nf

       nfatt>nf =>  -- for the previous values there were more factors
         if testp then leadtest:= not polCase(lffc*clc,#plist,leadcomp)
         else leadtest:= false
         -- if polCase=true we can consider the univariate decomposition
         if not leadtest then
           unifact:=[uf.factor for uf in lunivf]
           lffc:=lffc1
           if testp then leadcomp:=leadcomp1
           int:=lval
         nfatt := nf
      [cons(int,ltry),unifact,lffc,leadcomp]$Valuf


                ----  The polynomial has mindeg>0   ----

    simplify(m:P,lvar:L OV,lmdeg:L NNI,ufactor:UFactor):MFinalFact ==
      factorlist:L MParFact:=[]
      pol1:P:= 1$P
      for x in lvar repeat
        i := lmdeg.(position(x,lvar))
        i=0 => "next value"
        pol1:=pol1*monomial(1$P,x,i)
        factorlist:=cons([x::P,i]$MParFact,factorlist)
      m := (m exquo pol1)::P
      ground? m => [retract m,factorlist]$MFinalFact
      flead:=mFactor(m,ufactor)
      flead.factors:=append(factorlist,flead.factors)
      flead

    -- This is the key internal function
    -- We now know that the polynomial is square-free etc.,
    -- We use intChoose to find a set of integer values to reduce the
    -- problem to univariate (and for efficiency, intChoose returns
    -- the univariate factors).
    -- In the case of a polynomial leading coefficient, we check that this 
    -- is consistent with leading coefficient determination (else try again)
    -- We then lift the univariate factors to multivariate factors, and
    -- return the result
    intfact(um:USP,lvar: L OV,ldeg:L NNI,tleadpol:MFinalFact,
                                   ltry:L L R,ufactor:UFactor) :  L USP ==
      polcase:Boolean:=(not empty? tleadpol.factors)
      vfchoo:Valuf:=
        polcase =>
          leadpol:L P:=[ff.irr for ff in tleadpol.factors]
          check:=intChoose(um,lvar,tleadpol.contp,leadpol,ltry,ufactor)
          check case "failed" => return monicMfpol(um,lvar,ldeg,ufactor)
          check::Valuf
        intChoose(um,lvar,1,empty(),empty(),ufactor)::Valuf
      unifact:List BP := vfchoo.unvfact
      nfact:NNI := #unifact
      nfact=1 => [um]
      ltry:L L R:= vfchoo.inval
      lval:L R:=first ltry
      dd:= vfchoo.lu
      leadval:L R:=empty()
      lpol:List P:=empty()
      if polcase then
        leadval := vfchoo.complead
        distf := distFact(vfchoo.lu,unifact,tleadpol,leadval,lvar,lval)
        distf case "failed" =>
             return intfact(um,lvar,ldeg,tleadpol,ltry,ufactor)
        dist := distf :: LeadFact
          -- check the factorization of leading coefficient
        lpol:= dist.polfac
        dd := dist.correct
        unifact:=dist.corrfact
      if not one? dd then
--        if polcase then lpol := [unitCanonical lp for lp in lpol]
--        dd:=unitCanonical(dd)
        unifact := [dd * unif for unif in unifact]
        umd := unitNormal(dd).unit * ((dd**(nfact-1)::NNI)::P)*um
      else umd := um
      (ffin:=lifting(umd,lvar,unifact,lval,lpol,ldeg,pmod))
        case "failed" => intfact(um,lvar,ldeg,tleadpol,ltry,ufactor)
      factfin: L USP:=ffin :: L USP
      if not one? dd then
        factfin:=[primitivePart ff for ff in factfin]
      factfin

                ----  m square-free,primitive,lc constant  ----
    mfconst(um:USP,lvar:L OV,ldeg:L NNI,ufactor:UFactor):L USP ==
      factfin:L USP:=empty()
      empty? lvar =>
        lum:=factors ufactor(map(ground,um)$UPCF2(P,USP,R,BP))
        [map(coerce,uf.factor)$UPCF2(R,BP,P,USP) for uf in lum]
      intfact(um,lvar,ldeg,[0,empty()]$MFinalFact,empty(),ufactor)

    monicize(um:USP,c:P):USP ==
      n:=degree(um)
      ans:USP := monomial(1,n)
      n:=(n-1)::NonNegativeInteger
      prod:P:=1
      while (um:=reductum(um)) ~= 0 repeat
        i := degree um
        lc := leadingCoefficient um
        prod := prod * c ** (n-(n:=i))::NonNegativeInteger
        ans := ans + monomial(prod*lc, i)
      ans

    unmonicize(m:USP,c:P):USP == primitivePart m(monomial(c,1))

              --- m is square-free,primitive,lc is a polynomial  ---
    monicMfpol(um:USP,lvar:L OV,ldeg:L NNI,ufactor:UFactor):L USP ==
      l := leadingCoefficient um
      monpol := monicize(um,l)
      nldeg := degree(monpol,lvar)
      map(unmonicize(#1,l),
                mfconst(monpol,lvar,nldeg,ufactor))

    mfpol(um:USP,lvar:L OV,ldeg:L NNI,ufactor:UFactor):L USP ==
      R has Field =>
        monicMfpol(um,lvar,ldeg,ufactor)
      tleadpol:=mFactor(leadingCoefficient um,ufactor)
      intfact(um,lvar,ldeg,tleadpol,[],ufactor)

    mFactor(m:P,ufactor:UFactor) : MFinalFact ==
      ground?(m) => [retract(m),empty()]$MFinalFact
      lvar:L OV:= variables m
      lcont:P
      lf:L USP
      flead : MFinalFact:=[0,empty()]$MFinalFact
      factorlist:L MParFact :=empty()

      lmdeg :=minimumDegree(m,lvar)     ---- is the Mindeg > 0? ----
      or/[positive? n for n in lmdeg] => simplify(m,lvar,lmdeg,ufactor)

      sqfacs := squareFree m
      lcont := unit sqfacs

                                  ----  Factorize the content  ----
      if ground? lcont then flead.contp:=retract lcont
      else flead:=mFactor(lcont,ufactor)
      factorlist:=flead.factors



                              ----  Make the polynomial square-free  ----
      sqqfact:=factors sqfacs

                       ---  Factorize the primitive square-free terms ---
      for fact in sqqfact repeat
        ffactor:P:=fact.factor
        ffexp := fact.exponent
        lvar := variables ffactor
        x:OV :=lvar.first
        ldeg:=degree(ffactor,lvar)
             ---  Is the polynomial linear in one of the variables ? ---
        member?(1,ldeg) =>
          x:OV:=lvar.position(1,ldeg)
          lcont:= gcd coefficients(univariate(ffactor,x))
          ffactor:=(ffactor exquo lcont)::P
          factorlist:=cons([ffactor,ffexp]$MParFact,factorlist)
          for lcterm in mFactor(lcont,ufactor).factors repeat
           factorlist:=cons([lcterm.irr,lcterm.pow * ffexp], factorlist)

        varch:=varChoose(ffactor,lvar,ldeg)
        um:=varch.npol

        x:=lvar.first
        ldeg:=ldeg.rest
        lvar := lvar.rest
        if varch.nvar.first ~= x then
          lvar:= varch.nvar
          x := lvar.first
          lvar := lvar.rest
        pc:= gcd coefficients um
        if not one? pc then
            um:=(um exquo pc)::USP
            ffactor:=multivariate(um,x)
            for lcterm in mFactor(pc,ufactor).factors repeat
              factorlist:=cons([lcterm.irr,lcterm.pow*ffexp],factorlist)
        ldeg:=degree(ffactor,lvar)
        um := unitCanonical um
        if ground?(leadingCoefficient um) then
           lf:= mfconst(um,lvar,ldeg,ufactor)
        else lf:=mfpol(um,lvar,ldeg,ufactor)
        auxfl:=[[unitCanonical multivariate(lfp,x),ffexp]$MParFact  for lfp in lf]
        factorlist:=append(factorlist,auxfl)
      lcfacs := */[leadingCoefficient(f.irr)**((f.pow)::NNI) for f in factorlist]
      [(leadingCoefficient(m) exquo lcfacs):: R,factorlist]$MFinalFact

    factor(m:P,ufactor:UFactor):Factored P ==
      flist := mFactor(m,ufactor)
      (flist.contp):: P *
        (*/[primeFactor(u.irr,u.pow) for u in flist.factors])

@
\section{package MULTFACT MultivariateFactorize}
<<package MULTFACT MultivariateFactorize>>=
)abbrev package MULTFACT MultivariateFactorize
++ Author: P. Gianni
++ Date Created: 1983
++ Date Last Updated: Sept. 1990
++ Basic Functions:
++ Related Constructors: MultFiniteFactorize, AlgebraicMultFact, UnivariateFactorize
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++   This is the top level package for doing multivariate factorization
++ over basic domains like \spadtype{Integer} or \spadtype{Fraction Integer}.

MultivariateFactorize(OV,E,R,P) : C == T
 where
  R          :   Join(EuclideanDomain, CharacteristicZero)
                    -- with factor on R[x]
  OV         :   OrderedSet
  E          :   OrderedAbelianMonoidSup
  P          :   PolynomialCategory(R,E,OV)
  Z            ==> Integer
  MParFact     ==> Record(irr:P,pow:Z)
  USP          ==> SparseUnivariatePolynomial P
  SUParFact    ==> Record(irr:USP,pow:Z)
  SUPFinalFact ==> Record(contp:R,factors:List SUParFact)
  MFinalFact   ==> Record(contp:R,factors:List MParFact)
 
                 --  contp   =  content,
                 --  factors =  List of irreducible factors with exponent
  L          ==> List

  C == with
    factor      :      P  ->  Factored P
      ++ factor(p) factors the multivariate polynomial p over its coefficient
      ++ domain
    factor      :      USP  ->  Factored USP
      ++ factor(p) factors the multivariate polynomial p over its coefficient
      ++ domain where p is represented as a univariate polynomial with
      ++ multivariate coefficients
  T == add
    factor(p:P) : Factored P ==
      R is Fraction Integer =>
         factor(p)$MRationalFactorize(E,OV,Integer,P)
      R is Fraction Complex Integer =>
         factor(p)$MRationalFactorize(E,OV,Complex Integer,P)
      R is Fraction Polynomial Integer and OV has convert: % -> Symbol =>
         factor(p)$MPolyCatRationalFunctionFactorizer(E,OV,Integer,P)
      factor(p,factor$GenUFactorize(R))$InnerMultFact(OV,E,R,P)

    factor(up:USP) : Factored USP ==
      factor(up,factor$GenUFactorize(R))$InnerMultFact(OV,E,R,P)

@
\section{package ALGMFACT AlgebraicMultFact}
<<package ALGMFACT AlgebraicMultFact>>=
)abbrev package ALGMFACT AlgebraicMultFact
++ Author: P. Gianni
++ Date Created: 1990
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package factors multivariate polynomials over the
++ domain of \spadtype{AlgebraicNumber} by allowing the user
++ to specify a list of algebraic numbers generating the particular
++ extension to factor over.

AlgebraicMultFact(OV,E,P) : C == T
 where
  AN         ==> AlgebraicNumber
  OV         :   OrderedSet
  E          :   OrderedAbelianMonoidSup
  P          :   PolynomialCategory(AN,E,OV)
  BP         ==> SparseUnivariatePolynomial AN
  Z            ==> Integer
  MParFact     ==> Record(irr:P,pow:Z)
  USP          ==> SparseUnivariatePolynomial P
  SUParFact    ==> Record(irr:USP,pow:Z)
  SUPFinalFact ==> Record(contp:R,factors:List SUParFact)
  MFinalFact   ==> Record(contp:R,factors:List MParFact)

                 --  contp   =  content,
                 --  factors =  List of irreducible factors with exponent
  L          ==> List

  C == with
    factor      :   (P,L AN)  ->  Factored P
      ++ factor(p,lan) factors the polynomial p over the extension
      ++ generated by the algebraic numbers given by the list lan.
    factor      :   (USP,L AN)  ->  Factored USP
      ++ factor(p,lan) factors the polynomial p over the extension
      ++ generated by the algebraic numbers given by the list lan.
      ++ p is presented as a univariate polynomial with multivariate
      ++ coefficients.
  T == add
    AF := AlgFactor(BP)

    factor(p:P,lalg:L AN) : Factored P ==
      factor(p,factor(#1,lalg)$AF)$InnerMultFact(OV,E,AN,P)

    factor(up:USP,lalg:L AN) : Factored USP ==
      factor(up,factor(#1,lalg)$AF)$InnerMultFact(OV,E,AN,P)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package INNMFACT InnerMultFact>>
<<package MULTFACT MultivariateFactorize>>
<<package ALGMFACT AlgebraicMultFact>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}