aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/si.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2010-04-04 17:20:33 +0000
committerdos-reis <gdr@axiomatics.org>2010-04-04 17:20:33 +0000
commitae3725b1b6208264518fbcd4d7adadd68978d26f (patch)
tree5d54b04001178fdfbf0eaa4a5031658e092d2aa2 /src/algebra/si.spad.pamphlet
parentda7d92d632deab11bb2c93a9b51dc4972707003d (diff)
downloadopen-axiom-ae3725b1b6208264518fbcd4d7adadd68978d26f.tar.gz
* algebra/boolean.spad.pamphlet (BooleanLogic): New.
(PropositionalLogic): Extend it. * algebra/aggcat.spad.pamphlet (BitAggregate): Likewise. * algebra/si.spad.pamphlet (SingleInteger): Assert membership to BooleanLogic.
Diffstat (limited to 'src/algebra/si.spad.pamphlet')
-rw-r--r--src/algebra/si.spad.pamphlet6
1 files changed, 3 insertions, 3 deletions
diff --git a/src/algebra/si.spad.pamphlet b/src/algebra/si.spad.pamphlet
index 1eece3c6..4e93667d 100644
--- a/src/algebra/si.spad.pamphlet
+++ b/src/algebra/si.spad.pamphlet
@@ -187,7 +187,7 @@ IntegerNumberSystem(): Category ==
-- QSOR, QSXOR, QSLEFTSHIFT, QSADDMOD, QSDIFMOD, QSMULTMOD
-SingleInteger(): Join(IntegerNumberSystem,OrderedFinite,Logic,OpenMath) with
+SingleInteger(): Join(IntegerNumberSystem,OrderedFinite,BooleanLogic,Logic,OpenMath) with
canonical
++ \spad{canonical} means that mathematical equality is implied by data structure equality.
canonicalsClosed
@@ -196,8 +196,6 @@ SingleInteger(): Join(IntegerNumberSystem,OrderedFinite,Logic,OpenMath) with
++ \spad{noetherian} all ideals are finitely generated (in fact principal).
-- bit operations
- not: % -> %
- ++ not(n) returns the bit-by-bit logical {\em not} of the single integer n.
xor: (%, %) -> %
++ xor(n,m) returns the bit-by-bit logical {\em xor} of
++ the single integers n and m.
@@ -280,7 +278,9 @@ SingleInteger(): Join(IntegerNumberSystem,OrderedFinite,Logic,OpenMath) with
x \/ y == LOGIOR(x,y)$Lisp
Not(x) == LOGNOT(x)$Lisp
And(x,y) == LOGAND(x,y)$Lisp
+ x and y == And(x,y)
Or(x,y) == LOGIOR(x,y)$Lisp
+ x or y == Or(x,y)
xor(x,y) == LOGXOR(x,y)$Lisp
x < y == QSLESSP(x,y)$Lisp
x > y == QSGREATERP(x,y)$Lisp