diff options
author | dos-reis <gdr@axiomatics.org> | 2010-04-04 17:20:33 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2010-04-04 17:20:33 +0000 |
commit | ae3725b1b6208264518fbcd4d7adadd68978d26f (patch) | |
tree | 5d54b04001178fdfbf0eaa4a5031658e092d2aa2 /src/algebra/si.spad.pamphlet | |
parent | da7d92d632deab11bb2c93a9b51dc4972707003d (diff) | |
download | open-axiom-ae3725b1b6208264518fbcd4d7adadd68978d26f.tar.gz |
* algebra/boolean.spad.pamphlet (BooleanLogic): New.
(PropositionalLogic): Extend it.
* algebra/aggcat.spad.pamphlet (BitAggregate): Likewise.
* algebra/si.spad.pamphlet (SingleInteger): Assert membership to
BooleanLogic.
Diffstat (limited to 'src/algebra/si.spad.pamphlet')
-rw-r--r-- | src/algebra/si.spad.pamphlet | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/src/algebra/si.spad.pamphlet b/src/algebra/si.spad.pamphlet index 1eece3c6..4e93667d 100644 --- a/src/algebra/si.spad.pamphlet +++ b/src/algebra/si.spad.pamphlet @@ -187,7 +187,7 @@ IntegerNumberSystem(): Category == -- QSOR, QSXOR, QSLEFTSHIFT, QSADDMOD, QSDIFMOD, QSMULTMOD -SingleInteger(): Join(IntegerNumberSystem,OrderedFinite,Logic,OpenMath) with +SingleInteger(): Join(IntegerNumberSystem,OrderedFinite,BooleanLogic,Logic,OpenMath) with canonical ++ \spad{canonical} means that mathematical equality is implied by data structure equality. canonicalsClosed @@ -196,8 +196,6 @@ SingleInteger(): Join(IntegerNumberSystem,OrderedFinite,Logic,OpenMath) with ++ \spad{noetherian} all ideals are finitely generated (in fact principal). -- bit operations - not: % -> % - ++ not(n) returns the bit-by-bit logical {\em not} of the single integer n. xor: (%, %) -> % ++ xor(n,m) returns the bit-by-bit logical {\em xor} of ++ the single integers n and m. @@ -280,7 +278,9 @@ SingleInteger(): Join(IntegerNumberSystem,OrderedFinite,Logic,OpenMath) with x \/ y == LOGIOR(x,y)$Lisp Not(x) == LOGNOT(x)$Lisp And(x,y) == LOGAND(x,y)$Lisp + x and y == And(x,y) Or(x,y) == LOGIOR(x,y)$Lisp + x or y == Or(x,y) xor(x,y) == LOGXOR(x,y)$Lisp x < y == QSLESSP(x,y)$Lisp x > y == QSGREATERP(x,y)$Lisp |