aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGabriel Dos Reis <gdr@axiomatics.org>2015-12-30 10:59:32 -0800
committerGabriel Dos Reis <gdr@axiomatics.org>2015-12-30 10:59:32 -0800
commit853eb071dce89161c796d81b24eddd9e073687af (patch)
tree32087791713be9e19d9d895a647904a9fe5f1634
parent93910b392982db0452864f30db17267e0f30ea41 (diff)
downloadopen-axiom-853eb071dce89161c796d81b24eddd9e073687af.tar.gz
Use CoercibleTo category instances instead of ad-hoc hard-wired 'coerce: % -> T' signatures.
-rw-r--r--src/algebra/crfp.spad.pamphlet2
-rw-r--r--src/algebra/forttyp.spad.pamphlet10
-rw-r--r--src/algebra/modring.spad.pamphlet12
-rw-r--r--src/algebra/permgrps.spad.pamphlet7
-rw-r--r--src/algebra/pfr.spad.pamphlet6
-rw-r--r--src/algebra/space.spad.pamphlet2
-rw-r--r--src/algebra/tableau.spad.pamphlet4
-rw-r--r--src/algebra/variable.spad.pamphlet2
-rw-r--r--src/algebra/view2D.spad.pamphlet7
-rw-r--r--src/algebra/xlpoly.spad.pamphlet36
10 files changed, 15 insertions, 73 deletions
diff --git a/src/algebra/crfp.spad.pamphlet b/src/algebra/crfp.spad.pamphlet
index 9f61ed5d..7ba3af33 100644
--- a/src/algebra/crfp.spad.pamphlet
+++ b/src/algebra/crfp.spad.pamphlet
@@ -539,7 +539,7 @@ ComplexRootFindingPackage(R, UP): public == private where
num : I := approxNthRoot(globalDigits * numer r ,n)$IntegerRoots(I)
num/den
-- the following doesn't compile
- --R has coerce: % -> Fraction Integer =>
+ --R has CoercibleTo Fraction Integer =>
-- q : Fraction Integer := coerce(r)@Fraction(Integer)
-- den : I := approxNthRoot(globalDigits * denom q ,n)$IntegerRoots(I)
-- num : I := approxNthRoot(globalDigits * numer q ,n)$IntegerRoots(I)
diff --git a/src/algebra/forttyp.spad.pamphlet b/src/algebra/forttyp.spad.pamphlet
index 77e05eed..d2cfdc81 100644
--- a/src/algebra/forttyp.spad.pamphlet
+++ b/src/algebra/forttyp.spad.pamphlet
@@ -26,7 +26,7 @@
++ basic FORTRAN data types: REAL, INTEGER, COMPLEX, LOGICAL and CHARACTER
FortranScalarType() : exports == implementation where
- exports == CoercibleTo OutputForm with
+ exports == Join(CoercibleTo OutputForm,CoercibleTo Symbol,CoercibleTo SExpression) with
coerce : String -> $
++ coerce(s) transforms the string s into an element of
++ FortranScalarType provided s is one of "real", "double precision",
@@ -38,10 +38,6 @@ FortranScalarType() : exports == implementation where
++ FortranScalarType provided s is one of real, complex,double precision,
++ logical, integer, character, REAL, COMPLEX, LOGICAL,
++ INTEGER, CHARACTER, DOUBLE PRECISION
- coerce : $ -> Symbol
- ++ coerce(x) returns the symbol associated with x
- coerce : $ -> SExpression
- ++ coerce(x) returns the s-expression associated with x
real? : $ -> Boolean
++ real?(t) tests whether t is equivalent to the FORTRAN type REAL.
double? : $ -> Boolean
@@ -294,9 +290,7 @@ SymbolTable() : exports == implementation where
L ==> List
FSTU ==> Union(fst:FortranScalarType,void:"void")
- exports ==> CoercibleTo OutputForm with
- coerce : $ -> Table(Symbol,FortranType)
- ++ coerce(x) returns a table view of x
+ exports ==> Join(CoercibleTo OutputForm,CoercibleTo Table(Symbol,FortranType)) with
empty : () -> $
++ empty() returns a new, empty symbol table
declare! : (L Symbol,FortranType,$) -> FortranType
diff --git a/src/algebra/modring.spad.pamphlet b/src/algebra/modring.spad.pamphlet
index a802176d..19edbc9d 100644
--- a/src/algebra/modring.spad.pamphlet
+++ b/src/algebra/modring.spad.pamphlet
@@ -34,11 +34,9 @@ ModularRing(R,Mod,reduction:(R,Mod) -> R,
R : CommutativeRing
Mod : AbelianMonoid
- C == Ring with
+ C == Join(Ring,CoercibleTo R) with
modulus : % -> Mod
++ modulus(x) \undocumented
- coerce : % -> R
- ++ coerce(x) \undocumented
reduce : (R,Mod) -> %
++ reduce(r,m) \undocumented
exQuo : (%,%) -> Union(%,"failed")
@@ -114,11 +112,9 @@ EuclideanModularRing(S,R,Mod,reduction:(R,Mod) -> R,
R : UnivariatePolynomialCategory S
Mod : AbelianMonoid
- C == Join(EuclideanDomain, Eltable(R,R)) with
+ C == Join(EuclideanDomain, Eltable(R,R),CoercibleTo R) with
modulus : % -> Mod
++ modulus(x) \undocumented
- coerce : % -> R
- ++ coerce(x) \undocumented
reduce : (R,Mod) -> %
++ reduce(r,m) \undocumented
exQuo : (%,%) -> Union(%,"failed")
@@ -208,11 +204,9 @@ ModularField(R,Mod,reduction:(R,Mod) -> R,
R : CommutativeRing
Mod : AbelianMonoid
- C == Field with
+ C == Join(Field,CoercibleTo R) with
modulus : % -> Mod
++ modulus(x) \undocumented
- coerce : % -> R
- ++ coerce(x) \undocumented
reduce : (R,Mod) -> %
++ reduce(r,m) \undocumented
exQuo : (%,%) -> Union(%,"failed")
diff --git a/src/algebra/permgrps.spad.pamphlet b/src/algebra/permgrps.spad.pamphlet
index eaaaf376..39a9db79 100644
--- a/src/algebra/permgrps.spad.pamphlet
+++ b/src/algebra/permgrps.spad.pamphlet
@@ -54,10 +54,8 @@ PermutationGroup(S:SetCategory): public == private where
REC3 ==> Record(elt:V NNI,lst:L NNI)
REC4 ==> Record(bool:B,lst:L NNI)
- public ==> SetCategory with
+ public ==> Join(SetCategory,HomotopicTo L PERM S) with
- coerce : % -> L PERM S
- ++ coerce(gp) returns the generators of the group {\em gp}.
generators : % -> L PERM S
++ generators(gp) returns the generators of the group {\em gp}.
elt : (%,NNI) -> PERM S
@@ -84,9 +82,6 @@ PermutationGroup(S:SetCategory): public == private where
++ generators of the group {\em gp} in the original generators of
++ {\em gp}, represented by their indices in the list, given by
++ {\em generators}.
- coerce : L PERM S -> %
- ++ coerce(ls) coerces a list of permutations {\em ls} to the group
- ++ generated by this list.
permutationGroup : L PERM S -> %
++ permutationGroup(ls) coerces a list of permutations {\em ls} to
++ the group generated by this list.
diff --git a/src/algebra/pfr.spad.pamphlet b/src/algebra/pfr.spad.pamphlet
index a8de6b27..4faabd28 100644
--- a/src/algebra/pfr.spad.pamphlet
+++ b/src/algebra/pfr.spad.pamphlet
@@ -43,11 +43,7 @@ PartialFraction(R: EuclideanDomain): Cat == Capsule where
FRR ==> Factored R
SUPR ==> SparseUnivariatePolynomial R
- Cat == Join(Field, Algebra R) with
- coerce: % -> Fraction R
- ++ coerce(p) sums up the components of the partial fraction and
- ++ returns a single fraction.
-
+ Cat == Join(Field, Algebra R,CoercibleTo Fraction R) with
coerce: Fraction FRR -> %
++ coerce(f) takes a fraction with numerator and denominator in
++ factored form and creates a partial fraction. It is
diff --git a/src/algebra/space.spad.pamphlet b/src/algebra/space.spad.pamphlet
index 23d46039..61b7260d 100644
--- a/src/algebra/space.spad.pamphlet
+++ b/src/algebra/space.spad.pamphlet
@@ -287,8 +287,6 @@ ThreeSpaceCategory(R:Ring): Exports == Implementation where
subspace : % -> SUBSPACE
++ subspace(s) returns the \spadtype{SubSpace} which holds all the point
++ information in the \spadtype{ThreeSpace}, s.
- coerce : % -> O
- ++ coerce(s) returns the \spadtype{ThreeSpace} s to Output format.
@
\section{domain SPACE3 ThreeSpace}
diff --git a/src/algebra/tableau.spad.pamphlet b/src/algebra/tableau.spad.pamphlet
index a5432bec..a6177938 100644
--- a/src/algebra/tableau.spad.pamphlet
+++ b/src/algebra/tableau.spad.pamphlet
@@ -33,13 +33,11 @@ Tableau(S:SetCategory):Exports == Implementation where
OUT ==> OutputForm
V ==> Vector
fm==>formMatrix$PrintableForm()
- Exports ==> with
+ Exports ==> CoercibleTo OUT with
tableau : L L S -> %
++ tableau(ll) converts a list of lists ll to a tableau.
listOfLists : % -> L L S
++ listOfLists t converts a tableau t to a list of lists.
- coerce : % -> OUT
- ++ coerce(t) converts a tableau t to an output form.
Implementation ==> add
Rep := L L S
diff --git a/src/algebra/variable.spad.pamphlet b/src/algebra/variable.spad.pamphlet
index 1ae7899d..3489579f 100644
--- a/src/algebra/variable.spad.pamphlet
+++ b/src/algebra/variable.spad.pamphlet
@@ -46,8 +46,6 @@ OrderedVariableList(VariableList:List Symbol):
++ Description:
++ This domain implements variables
Variable(sym:Symbol): Join(SetCategory, CoercibleTo Symbol) with
- coerce : % -> Symbol
- ++ coerce(x) returns the symbol
variable: () -> Symbol
++ variable() returns the symbol
== add
diff --git a/src/algebra/view2D.spad.pamphlet b/src/algebra/view2D.spad.pamphlet
index bdd63f5e..e3ac52c7 100644
--- a/src/algebra/view2D.spad.pamphlet
+++ b/src/algebra/view2D.spad.pamphlet
@@ -163,9 +163,6 @@ GraphImage (): Exports == Implementation where
++ \spadfun{pointSizeDefault}. The graph data is then sent to the
++ viewport manager where it waits to be included in a two-dimensional
++ viewport window.
- coerce : $ -> E
- ++ coerce(gi) returns the indicated graph, \spad{gi}, of domain
- ++ \spadtype{GraphImage} as output of the domain \spadtype{OutputForm}.
putColorInfo : (L L P,L PAL) -> L L P
++ putColorInfo(llp,lpal) takes a list of list of points, \spad{llp},
++ and returns the points with their hue and shade components
@@ -748,10 +745,6 @@ TwoDimensionalViewport ():Exports == Implementation where
key : $ -> I
++ key(v) returns the process ID number of the given two-dimensional
++ viewport, v, which is of domain \spadtype{TwoDimensionalViewport}.
- coerce : $ -> E
- ++ coerce(v) returns the given two-dimensional viewport, v, which
- ++ is of domain \spadtype{TwoDimensionalViewport} as output of
- ++ the domain \spadtype{OutputForm}.
Implementation ==> add
diff --git a/src/algebra/xlpoly.spad.pamphlet b/src/algebra/xlpoly.spad.pamphlet
index 6090799a..0ce1f1b0 100644
--- a/src/algebra/xlpoly.spad.pamphlet
+++ b/src/algebra/xlpoly.spad.pamphlet
@@ -35,12 +35,9 @@ Magma(VarSet:OrderedSet):Public == Private where
WORD ==> OrderedFreeMonoid(VarSet)
EX ==> OutputForm
- Public == Join(OrderedSet,RetractableTo VarSet) with
+ Public == Join(OrderedSet,RetractableTo VarSet,CoercibleTo WORD) with
* : ($,$) -> $
++ \axiom{x*y} returns the tree \axiom{[x,y]}.
- coerce : $ -> WORD
- ++ \axiom{coerce(x)} returns the element of \axiomType{OrderedFreeMonoid}(VarSet)
- ++ corresponding to \axiom{x} by removing parentheses.
first : $ -> VarSet
++ \axiom{first(x)} returns the first entry of the tree \axiom{x}.
left : $ -> $
@@ -204,7 +201,7 @@ LyndonWord(VarSet:OrderedSet):Public == Private where
OF ==> OutputForm
ARRAY1==> OneDimensionalArray
- Public == Join(OrderedSet,RetractableTo VarSet) with
+ Public == Join(OrderedSet,RetractableTo VarSet,CoercibleTo OFMON,CoercibleTo Magma VarSet) with
retractable? : $ -> Boolean
++ \axiom{retractable?(x)} tests if \axiom{x} is a tree with only one entry.
left : $ -> $
@@ -218,12 +215,6 @@ LyndonWord(VarSet:OrderedSet):Public == Private where
lexico : ($,$) -> Boolean
++ \axiom{lexico(x,y)} returns \axiom{true} iff \axiom{x} is smaller than
++ \axiom{y} w.r.t. the lexicographical ordering induced by \axiom{VarSet}.
- coerce : $ -> OFMON
- ++ \axiom{coerce(x)} returns the element of \axiomType{OrderedFreeMonoid}(VarSet)
- ++ corresponding to \axiom{x}.
- coerce : $ -> Magma VarSet
- ++ \axiom{coerce(x)} returns the element of \axiomType{Magma}(VarSet)
- ++ corresponding to \axiom{x}.
factor : OFMON -> List $
++ \axiom{factor(x)} returns the decreasing factorization into Lyndon words.
lyndon?: OFMON -> Boolean
@@ -395,16 +386,12 @@ FreeLieAlgebra(VarSet:OrderedSet, R:CommutativeRing) :Category == CatDef where
RN ==> Fraction Integer
LWORD ==> LyndonWord(VarSet)
- CatDef == Join(LieAlgebra(R)) with
+ CatDef == Join(LieAlgebra(R),CoercibleTo XDPOLY,CoercibleTo XRPOLY) with
coef : (XRPOLY , $) -> R
++ \axiom{coef(x,y)} returns the scalar product of \axiom{x} by \axiom{y},
++ the set of words being regarded as an orthogonal basis.
coerce : VarSet -> $
++ \axiom{coerce(x)} returns \axiom{x} as a Lie polynomial.
- coerce : $ -> XDPOLY
- ++ \axiom{coerce(x)} returns \axiom{x} as distributed polynomial.
- coerce : $ -> XRPOLY
- ++ \axiom{coerce(x)} returns \axiom{x} as a recursive polynomial.
degree : $ -> NonNegativeInteger
++ \axiom{degree(x)} returns the greatest length of a word in the support of \axiom{x}.
--if R has Module(RN) then
@@ -743,12 +730,9 @@ PoincareBirkhoffWittLyndonBasis(VarSet: OrderedSet): Public == Private where
NNI ==> NonNegativeInteger
EX ==> OutputForm
- Public == Join(OrderedSet, RetractableTo LWORD) with
+ Public == Join(OrderedSet, RetractableTo LWORD,CoercibleTo WORD) with
1: constant -> %
++ \spad{1} returns the empty list.
- coerce : $ -> WORD
- ++ \spad{coerce([l1]*[l2]*...[ln])} returns the word \spad{l1*l2*...*ln},
- ++ where \spad{[l_i]} is the backeted form of the Lyndon word \spad{l_i}.
coerce : VarSet -> $
++ \spad{coerce(v)} return \spad{v}
first : $ -> LWORD
@@ -866,13 +850,9 @@ XPBWPolynomial(VarSet:OrderedSet,R:CommutativeRing): XDPcat == XDPdef where
I ==> Integer
RN ==> Fraction(Integer)
- XDPcat == Join(XPolynomialsCat(VarSet,R), FreeModuleCat(R, BASIS)) with
+ XDPcat == Join(XPolynomialsCat(VarSet,R), FreeModuleCat(R, BASIS),CoercibleTo XDPOLY,CoercibleTo XRPOLY) with
coerce : LPOLY -> $
++ \axiom{coerce(p)} returns \axiom{p}.
- coerce : $ -> XDPOLY
- ++ \axiom{coerce(p)} returns \axiom{p} as a distributed polynomial.
- coerce : $ -> XRPOLY
- ++ \axiom{coerce(p)} returns \axiom{p} as a recursive polynomial.
LiePolyIfCan: $ -> Union(LPOLY,"failed")
++ \axiom{LiePolyIfCan(p)} return \axiom{p} if \axiom{p} is a Lie polynomial.
product : ($,$,NNI) -> $ -- produit tronque a l'ordre n
@@ -1111,17 +1091,13 @@ LieExponentials(VarSet, R, Order): XDPcat == XDPdef where
TERM1 ==> Record(k:LWORD, c:R)
EQ ==> Equation(R)
- XDPcat == Group with
+ XDPcat == Join(Group,CoercibleTo XDPOLY,CoercibleTo PBWPOLY) with
exp : LPOLY -> $
++ \axiom{exp(p)} returns the exponential of \axiom{p}.
log : $ -> LPOLY
++ \axiom{log(p)} returns the logarithm of \axiom{p}.
ListOfTerms : $ -> LTERMS
++ \axiom{ListOfTerms(p)} returns the internal representation of \axiom{p}.
- coerce : $ -> XDPOLY
- ++ \axiom{coerce(g)} returns the internal representation of \axiom{g}.
- coerce : $ -> PBWPOLY
- ++ \axiom{coerce(g)} returns the internal representation of \axiom{g}.
mirror : $ -> $
++ \axiom{mirror(g)} is the mirror of the internal representation of \axiom{g}.
varList : $ -> List VarSet