aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/xlpoly.spad.pamphlet
diff options
context:
space:
mode:
Diffstat (limited to 'src/algebra/xlpoly.spad.pamphlet')
-rw-r--r--src/algebra/xlpoly.spad.pamphlet36
1 files changed, 6 insertions, 30 deletions
diff --git a/src/algebra/xlpoly.spad.pamphlet b/src/algebra/xlpoly.spad.pamphlet
index 6090799a..0ce1f1b0 100644
--- a/src/algebra/xlpoly.spad.pamphlet
+++ b/src/algebra/xlpoly.spad.pamphlet
@@ -35,12 +35,9 @@ Magma(VarSet:OrderedSet):Public == Private where
WORD ==> OrderedFreeMonoid(VarSet)
EX ==> OutputForm
- Public == Join(OrderedSet,RetractableTo VarSet) with
+ Public == Join(OrderedSet,RetractableTo VarSet,CoercibleTo WORD) with
* : ($,$) -> $
++ \axiom{x*y} returns the tree \axiom{[x,y]}.
- coerce : $ -> WORD
- ++ \axiom{coerce(x)} returns the element of \axiomType{OrderedFreeMonoid}(VarSet)
- ++ corresponding to \axiom{x} by removing parentheses.
first : $ -> VarSet
++ \axiom{first(x)} returns the first entry of the tree \axiom{x}.
left : $ -> $
@@ -204,7 +201,7 @@ LyndonWord(VarSet:OrderedSet):Public == Private where
OF ==> OutputForm
ARRAY1==> OneDimensionalArray
- Public == Join(OrderedSet,RetractableTo VarSet) with
+ Public == Join(OrderedSet,RetractableTo VarSet,CoercibleTo OFMON,CoercibleTo Magma VarSet) with
retractable? : $ -> Boolean
++ \axiom{retractable?(x)} tests if \axiom{x} is a tree with only one entry.
left : $ -> $
@@ -218,12 +215,6 @@ LyndonWord(VarSet:OrderedSet):Public == Private where
lexico : ($,$) -> Boolean
++ \axiom{lexico(x,y)} returns \axiom{true} iff \axiom{x} is smaller than
++ \axiom{y} w.r.t. the lexicographical ordering induced by \axiom{VarSet}.
- coerce : $ -> OFMON
- ++ \axiom{coerce(x)} returns the element of \axiomType{OrderedFreeMonoid}(VarSet)
- ++ corresponding to \axiom{x}.
- coerce : $ -> Magma VarSet
- ++ \axiom{coerce(x)} returns the element of \axiomType{Magma}(VarSet)
- ++ corresponding to \axiom{x}.
factor : OFMON -> List $
++ \axiom{factor(x)} returns the decreasing factorization into Lyndon words.
lyndon?: OFMON -> Boolean
@@ -395,16 +386,12 @@ FreeLieAlgebra(VarSet:OrderedSet, R:CommutativeRing) :Category == CatDef where
RN ==> Fraction Integer
LWORD ==> LyndonWord(VarSet)
- CatDef == Join(LieAlgebra(R)) with
+ CatDef == Join(LieAlgebra(R),CoercibleTo XDPOLY,CoercibleTo XRPOLY) with
coef : (XRPOLY , $) -> R
++ \axiom{coef(x,y)} returns the scalar product of \axiom{x} by \axiom{y},
++ the set of words being regarded as an orthogonal basis.
coerce : VarSet -> $
++ \axiom{coerce(x)} returns \axiom{x} as a Lie polynomial.
- coerce : $ -> XDPOLY
- ++ \axiom{coerce(x)} returns \axiom{x} as distributed polynomial.
- coerce : $ -> XRPOLY
- ++ \axiom{coerce(x)} returns \axiom{x} as a recursive polynomial.
degree : $ -> NonNegativeInteger
++ \axiom{degree(x)} returns the greatest length of a word in the support of \axiom{x}.
--if R has Module(RN) then
@@ -743,12 +730,9 @@ PoincareBirkhoffWittLyndonBasis(VarSet: OrderedSet): Public == Private where
NNI ==> NonNegativeInteger
EX ==> OutputForm
- Public == Join(OrderedSet, RetractableTo LWORD) with
+ Public == Join(OrderedSet, RetractableTo LWORD,CoercibleTo WORD) with
1: constant -> %
++ \spad{1} returns the empty list.
- coerce : $ -> WORD
- ++ \spad{coerce([l1]*[l2]*...[ln])} returns the word \spad{l1*l2*...*ln},
- ++ where \spad{[l_i]} is the backeted form of the Lyndon word \spad{l_i}.
coerce : VarSet -> $
++ \spad{coerce(v)} return \spad{v}
first : $ -> LWORD
@@ -866,13 +850,9 @@ XPBWPolynomial(VarSet:OrderedSet,R:CommutativeRing): XDPcat == XDPdef where
I ==> Integer
RN ==> Fraction(Integer)
- XDPcat == Join(XPolynomialsCat(VarSet,R), FreeModuleCat(R, BASIS)) with
+ XDPcat == Join(XPolynomialsCat(VarSet,R), FreeModuleCat(R, BASIS),CoercibleTo XDPOLY,CoercibleTo XRPOLY) with
coerce : LPOLY -> $
++ \axiom{coerce(p)} returns \axiom{p}.
- coerce : $ -> XDPOLY
- ++ \axiom{coerce(p)} returns \axiom{p} as a distributed polynomial.
- coerce : $ -> XRPOLY
- ++ \axiom{coerce(p)} returns \axiom{p} as a recursive polynomial.
LiePolyIfCan: $ -> Union(LPOLY,"failed")
++ \axiom{LiePolyIfCan(p)} return \axiom{p} if \axiom{p} is a Lie polynomial.
product : ($,$,NNI) -> $ -- produit tronque a l'ordre n
@@ -1111,17 +1091,13 @@ LieExponentials(VarSet, R, Order): XDPcat == XDPdef where
TERM1 ==> Record(k:LWORD, c:R)
EQ ==> Equation(R)
- XDPcat == Group with
+ XDPcat == Join(Group,CoercibleTo XDPOLY,CoercibleTo PBWPOLY) with
exp : LPOLY -> $
++ \axiom{exp(p)} returns the exponential of \axiom{p}.
log : $ -> LPOLY
++ \axiom{log(p)} returns the logarithm of \axiom{p}.
ListOfTerms : $ -> LTERMS
++ \axiom{ListOfTerms(p)} returns the internal representation of \axiom{p}.
- coerce : $ -> XDPOLY
- ++ \axiom{coerce(g)} returns the internal representation of \axiom{g}.
- coerce : $ -> PBWPOLY
- ++ \axiom{coerce(g)} returns the internal representation of \axiom{g}.
mirror : $ -> $
++ \axiom{mirror(g)} is the mirror of the internal representation of \axiom{g}.
varList : $ -> List VarSet