aboutsummaryrefslogtreecommitdiff
path: root/src/interp/newfort.boot
blob: b4064de128c709ab404846d25bf89d27e273e2c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
-- Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
-- All rights reserved.
-- Copyright (C) 2007-2011, Gabriel Dos Reis.
-- All rights reserved.
--
-- Redistribution and use in source and binary forms, with or without
-- modification, are permitted provided that the following conditions are
-- met:
--
--     - Redistributions of source code must retain the above copyright
--       notice, this list of conditions and the following disclaimer.
--
--     - Redistributions in binary form must reproduce the above copyright
--       notice, this list of conditions and the following disclaimer in
--       the documentation and/or other materials provided with the
--       distribution.
--
--     - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--       names of its contributors may be used to endorse or promote products
--       derived from this software without specific prior written permission.
--
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
-- IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
-- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
-- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
-- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


import macros
namespace BOOT

$fortranArrayStartingIndex := 0

--% Translation of Expression to FORTRAN
assignment2Fortran1(name,e) ==
  $fortError : local := nil
  checkLines fortran2Lines statement2Fortran ["=",name,e]

integerAssignment2Fortran1(name,e) ==
  $fortError : local := nil
  $fortInts2Floats : local := nil
  checkLines fortran2Lines statement2Fortran ["=",name,e]

statement2Fortran e ==
  -- takes an object of type Expression and returns a list of
  -- strings. Any part of the expression which is a list starting
  -- with 'FORTRAN is merely passed on in the list of strings. The
  -- list of strings may contain '"%l".
  -- This is used when formatting e.g. a DO loop from Lisp
  $exp2FortTempVarIndex : local := 0
  $fortName : local := "DUMMY"
  $fortInts2Floats : local := nil
  fortranCleanUp exp2Fort1 segment fortPre exp2FortOptimize outputTran e

expression2Fortran e ==
  -- takes an object of type Expression and returns a list of
  -- strings. Any part of the expression which is a list starting
  -- with 'FORTRAN is merely passed on in the list of strings. The
  -- list of strings may contain '"%l".
  $exp2FortTempVarIndex : local := 0
  $fortName : local := newFortranTempVar()
  $fortInts2Floats : local := nil
  fortranCleanUp exp2Fort1 segment fortPre exp2FortOptimize outputTran e

expression2Fortran1(name,e) ==
  -- takes an object of type Expression and returns a list of
  -- strings. Any part of the expression which is a list starting
  -- with 'FORTRAN is merely passed on in the list of strings. The
  -- list of strings may contain '"%l".
  $exp2FortTempVarIndex : local := 0
  $fortName : local := name
  fortranCleanUp exp2Fort1 segment fortPre exp2FortOptimize outputTran e

newFortranTempVar() ==
  $exp2FortTempVarIndex := 1 + $exp2FortTempVarIndex
  newVar := makeSymbol strconc('"T",STRINGIMAGE $exp2FortTempVarIndex)
  updateSymbolTable(newVar,$defaultFortranType)
  newVar
 
fortranCleanUp l ==
  -- takes reversed list and cleans up a bit, putting it in
  -- correct order
  oldTok := nil
  m := nil
  for e in l repeat
    if not (oldTok = '"-" and e = '"+") then m := [e,:m]
    oldTok := e
  m
 
exp2Fort1 l ==
  s := nil
  for e in l repeat s := [:exp2Fort2(e,0,nil),:s]
  s
 
exp2Fort2(e,prec,oldOp) ==
  null e    => nil
  atom e    => [object2String e]
  e is [ "=",lhs,rhs] or e is [ '"=",lhs,rhs] =>
    ['"%l",:exp2Fort2(rhs,prec,'"="),'"=",:exp2Fort2(lhs,prec,'"=")]
 
  unaryOps    := ['"-",'"^",'"~"]
  unaryPrecs  := [700,260,50]
  binaryOps   := ['"|",'"**",'"/",'".LT.",'".GT.",'".EQ.",'".LE.",'".GE.", _
                  '"OVER",'".AND.",'".OR."]
  binaryPrecs := [0, 900, 800, 400, 400, 400, 400, 400, 800, 70, 90]
  naryOps     := ['"-",'"+",'"*",'",",'" ",'"ROW",'""]
  naryPrecs   := [700,  700, 800,  110,   0,     0,  0]
  nonUnaryOps := append(binaryOps,naryOps)
  [op,:args] := e
  op := object2String op
  nargs := #args
  nargs = 0 => exp2FortFn(op,args,0)
  nargs = 1 =>
    (p := position(op,unaryOps)) > -1 =>
      nprec := unaryPrecs.p
      s := [:exp2Fort2(first args,nprec,op),op]
      op = '"-" and atom first args => s
      op = oldOp and member(op,['"*",'"+"]) => s
      nprec <= prec => ['")",:s,'"("]
      s
    exp2FortFn(op,args,nargs)
  op = '"CMPLX" =>
    ['")",:exp2Fort2(second args, prec, op),'",",:exp2Fort2(first args,prec,op),'"("]
  member(op,nonUnaryOps) =>
    if nargs > 0 then arg1 := first args
    nargs = 1 and member(op, '("+" "*")) => exp2Fort2(arg1,prec,op)
    if nargs > 1 then arg2 := second args
    p := position(op,binaryOps)
    if p = -1
      then
        p := position(op,naryOps)
        nprec := naryPrecs.p
      else nprec := binaryPrecs.p
    s := nil
    for arg in args repeat
      op = '"+" and (arg is [m,a]) and member(m,'(_- "=")) =>
        if not s then s := ['junk]
        s:= [op,:exp2Fort2(a,nprec,op),'"-",:rest s]
      s := [op,:exp2Fort2(arg,nprec,op),:s]
    s := rest s
    op = oldOp and member(op,['"*",'"+"]) => s
    nprec <= prec => ['")",:s,'"("]
    s
  exp2FortFn(op,args,nargs)
 
 
exp2FortFn(op,args,nargs) ==
  s := ['"(",op]
  while args repeat
    s := ['",",:exp2Fort2(first args,0,op),:s]
    args := rest args
  if nargs > 0 then ['")",:rest s]
  else ['")",:s]
 
 
--% Optimization of Expression
 
exp2FortOptimize e ==
  -- $fortranOptimizationLevel means:
  --   0         just extract arrays
  --   1         extract common subexpressions
  --   2         try to optimize computing of powers
  $exprStack : local := nil
  atom e => [e]
  $fortranOptimizationLevel = 0 =>
    e1 := exp2FortOptimizeArray e
    reverse! [e1,:$exprStack]
  e := minimalise e
  for e1 in exp2FortOptimizeCS  e repeat
    e2 := exp2FortOptimizeArray e1
    $exprStack := [e2,:$exprStack]
  reverse! $exprStack

 
exp2FortOptimizeCS e ==
  $fortCsList : local := nil
  $fortCsHash : local := hashTable 'EQ
  $fortCsExprStack : local := nil
  $fortCsFuncStack : local := nil
  f := exp2FortOptimizeCS1 e
  reverse! [f,:$fortCsList]
 
-- bug fix to beenHere 
-- Thu Nov 05 12:01:46 CUT 1992 , Author: TTT
-- Used in exp2FortOprtimizeCS 
-- Original file : newfort.boot
beenHere(e,n) ==
  n.0 := n.0 + 1                      -- increase count (initially 1)
  n.0 = 2 =>                          -- first time back again
    var := n.1 := newFortranTempVar() -- stuff n.1 with new var
    exprStk := n.2                    -- get expression
    if exprStk then
-- using COPY-TREE : RPLAC does not smash $fortCsList
-- which led to inconsistencies in assignment of temp. vars.
      $fortCsList := copyTree [['"=",var,e],:$fortCsList]
      loc := first exprStk
      fun := first n.3
      fun = 'CAR =>
        loc.first := var
      fun = 'CDR =>
        if cons? rest loc
          then loc.rest := [var]
          else loc.rest := var
      SAY '"whoops"
    var
  n.1                     -- been here before, so just get variable


exp2FortOptimizeCS1 e ==
  -- we do nothing with atoms or simple lists containing atoms
  atom(e) or (atom first e and null rest e) => e
  e is [op,arg] and object2Identifier op = "-" and atom arg => e

  -- see if we have been here before
  not (object2Identifier first e in '(ROW AGGLST)) and
    (n := tableValue($fortCsHash,e)) => beenHere(e,n) -- where

  -- descend sucessive CARs of CDRs of e
  f := e
  while f repeat
    pushCsStacks(f,'CAR) where pushCsStacks(x,y) ==
      $fortCsExprStack := [x,:$fortCsExprStack]
      $fortCsFuncStack := [y,:$fortCsFuncStack]
    f.first := exp2FortOptimizeCS1 first f
    popCsStacks(0) where popCsStacks(x) ==
      $fortCsFuncStack := rest $fortCsFuncStack
      $fortCsExprStack := rest $fortCsExprStack
    g := rest f
    -- check to see of we have an non-nil atomic CDR
    g and atom g =>
      pushCsStacks(f,'CDR)
      f.rest := exp2FortOptimizeCS1 g
      popCsStacks(0)
      f := nil
    f := g

  object2Identifier first e in '(ROW AGGLST) => e

  -- see if we have already seen this expression
  n := tableValue($fortCsHash,e)
  null n =>
    n := vector [1,nil,$fortCsExprStack,$fortCsFuncStack]
    tableValue($fortCsHash,e) := n
    e
  beenHere(e,n)


 
exp2FortOptimizeArray e ==
  -- this handles arrays
  atom e => e
  [op,:args] := e
  op1 := object2Identifier op
  op1 in '(BRACE BRACKET) =>
    args is [['AGGLST,:elts]] =>
      LISTP first elts and first first elts in '(BRACE BRACKET) => fortError1 e
      -- var := newFortranTempVar()
      var := $fortName
      $exprStack := [[op,var,['AGGLST,:exp2FortOptimizeArray elts]],
        :$exprStack]
      var
  op1 = 'MATRIX =>
    -- var := newFortranTempVar()
    var := $fortName
    -- args looks like [nil,[ROW,...],[ROW,...]]
    $exprStack := [[op,var,:exp2FortOptimizeArray args],:$exprStack]
    var
  [exp2FortOptimizeArray op,:exp2FortOptimizeArray args]

 
--% FORTRAN Line Breaking
 
fortran2Lines f ==
  -- f is a list of strings
  -- returns: a list of strings where each string is a valid
  -- FORTRAN line in fixed form
 
  -- collect strings up to first %l or end of list. Then feed to
  -- fortran2Lines1.
  fs := nil
  lines := nil
  while f repeat
    while f and (ff := first(f)) ~= '"%l" repeat
      fs := [ff,:fs]
      f := rest f
    if f and first(f) = '"%l" then f := rest f
    lines := append(fortran2Lines1 reverse! fs,lines)
    fs := nil
  reverse! lines
 
fortran2Lines1 f ==
  -- f is a list of strings making up 1 FORTRAN statement
  -- return: a reverse list of FORTRAN lines
  normPref := makeString $fortIndent
  contPref := strconc("     &",makeString($fortIndent-6))
  lines := nil
  ll := $fortIndent
  while f repeat
    ok := true
    line := normPref
    ff := first f
    while ok repeat
      (ll + (sff := # ff)) <= $fortLength =>
        ll := ll + sff
        line := strconc(line,ff)
        f := rest f
        if f then ff := first f
        else ok := nil
      -- fill the line out to exactly $fortLength spaces if possible by splitting
      -- up symbols.  This is helpful when doing the segmentation
      -- calculations, and also means that very long strings (e.g. numbers
      -- with more than $fortLength-$fortIndent digits) are printed in a
      -- legal format. MCD
      if (ll < $fortLength) and (ll + sff) > $fortLength then
        spaceLeft := $fortLength - ll
        line := strconc(line,subSequence(ff,0,spaceLeft))
        ff := subSequence(ff,spaceLeft)
      lines := [line,:lines]
      ll := $fortIndent
      line := contPref
    if ll > $fortIndent then lines := [line,:lines]
  lines
 
-- The Fortran error functions
fortError1 u ==
  $fortError := "t"
  sayErrorly("Fortran translation error",
             "   No corresponding Fortran structure for:")
  mathPrint u
 
fortError(u,v) ==
  $fortError := "t"
  msg := strconc('"   ",STRINGIMAGE u);
  sayErrorly("Fortran translation error",msg)
  mathPrint v
 
--% Top Level Things to Call
-- The names are the same as those used in the old fortran code

dispStatement x ==
  $fortError : local := nil
  displayLines fortran2Lines statement2Fortran x


getStatement(x,ints2Floats?) ==
  $fortInts2Floats : local := ints2Floats?
  $fortError : local := nil
  checkLines fortran2Lines statement2Fortran x

fortexp0 x ==
  f := expression2Fortran x
  p := position('"%l",f)
  p < 0 => f
  l := nil
  while p < 0 repeat
    [t,:f] := f
    l := [t,:l]
  reverse! ['"...",:l]

++ This formatting routine is essentially used to print
++ values/expressions used to instantiate constructors.
formatAsFortranExpression x ==
  $fortInts2Floats: local := false
  fortranCleanUp exp2Fort1 segment fortPre outputTran x

 
dispfortexp x ==
  if atom(x) or x is [op,:.] and
    not (object2Identifier op in '(_= MATRIX construct ))
  then
      var := makeSymbol strconc('"R",object2String $IOindex)
      x := ['"=",var,x]
  dispfortexp1 x
 
dispfortexpf (xf, fortranName) ==
  $fortError : local := nil
  linef := fortran2Lines BUTLAST(expression2Fortran1(fortranName,xf),2)
  displayLines linef

dispfortexpj (xj, fortranName) ==
  $fortName : local := fortranName
  $fortError : local := nil
  linej := fortran2Lines BUTLAST(expression2Fortran1(fortranName,xj),2)
  displayLines linej


dispfortexp1 x ==
  $fortError : local := nil
  displayLines fortran2Lines expression2Fortran x

getfortexp1 x ==
  $fortError : local := nil
  checkLines fortran2Lines expression2Fortran x

displayLines1 lines ==
  for l in lines repeat
    PRINC(l,$fortranOutputStream)
    writeNewline $fortranOutputStream

displayLines lines ==
  if not $fortError then displayLines1 lines
 
checkLines lines ==
  $fortError => []
  lines

dispfortarrayexp (fortranName,m) ==
  $fortError : local := nil
  displayLines fortran2Lines BUTLAST(expression2Fortran1(fortranName,m),2)

getfortarrayexp(fortranName,m,ints2floats?) ==
  $fortInts2Floats : local := ints2floats?
  $fortError : local := nil
  checkLines fortran2Lines BUTLAST(expression2Fortran1(fortranName,m),2)

 
-- Globals
$currentSubprogram := nil
$symbolTable := nil
 


--fix [x,exp x]
 
------------ exp2FortSpecial.boot --------------------
 
exp2FortSpecial(op,args,nargs) ==
  op = "CONCAT" and first args in ["<",">","<=",">=","~","and","or"] =>
    mkFortFn(first args,CDADAR rest args,#(CDADAR rest args))
  op = "CONCAT" and second(args)="EQ" =>
    mkFortFn("EQ",[first args, third args],2)
  --the next line is NEVER used by FORTRAN code but is needed when
  --  called to get a linearized form for the browser
  op = "QUOTE" =>
    atom (arg := first args) => STRINGIMAGE arg
    tailPart := strconc/[strconc('",",x) for x in rest arg]
    strconc('"[",first arg,tailPart,'"]")
  op = "PAREN" =>
    args := first args
    not(first(args)="CONCATB") => fortError1 [op,:args]
    -- Have a matrix element
    mkMat(args)
  op = "SUB" =>
    $fortInts2Floats : local := nil
    mkFortFn(first args,rest args,#(rest args))
  op in ["BRACE","BRACKET"] =>
    args is [var,['AGGLST,:elts]] =>
      var := object2String var
      si := $fortranArrayStartingIndex
      hidim := #elts - 1 + si
      if LISTP first elts and #elts=1 and first elts is [sOp,:sArgs] then
        member(sOp, ['"SEGMENT","SEGMENT"]) =>
          #sArgs=1 => fortError1 first elts
          not(integer?(first sArgs) and integer?(second sArgs)) =>
            fortError("Cannot expand segment: ",first elts)
          first sArgs > second sArgs => fortError1
            '"Lower bound of segment exceeds upper bound."
          for e in first sArgs .. second sArgs for i in si.. repeat
            $exprStack := [["=",[var,object2String i],fortPre1(e)],:$exprStack]
      for e in elts for i in si.. repeat
        $exprStack := [["=",[var,object2String i],fortPre1(e)],:$exprStack]
    fortError1 [op,:args]
  op in ["CONCAT","CONCATB"] =>
    nargs = 0 => nil
    nargs = 1 => fortPre1 first args
    nargs = 2 and member(second args, ["!",'"!"]) =>
      mkFortFn("FACTORIAL",[first args],1)
    fortError1 [op,:args]
  member(op, ['"MATRIX","MATRIX"]) =>
    args is [var, =nil,:rows] =>
      var := object2String var
      nrows := #rows - 1
      ncols := #(rest first rows) - 1
      si := $fortranArrayStartingIndex
      for r in rows for rx in si.. repeat
        for c in rest r for cx in si.. repeat
          $exprStack := [["=",[var,object2String rx,object2String cx],
                          fortPre1(c)],:$exprStack]
    fortError1 [op,:args]
  fortError1 [op,:args]

mkMat(args) ==
  $fortInts2Floats : local := nil
  mkFortFn(second args,rest rest args,#(rest rest args))

 
mkFortFn(op,args,nargs) ==
  [fortranifyFunctionName(STRINGIMAGE op,nargs), 
   :[fortPre1 x for x in args]]
 
fortranifyFunctionName(op,nargs) ==
  op = '"<" => '".LT."
  op = '">" => '".GT."
  op = '"<=" => '".LE."
  op = '">=" => '".GE."
  op = '"EQ" => '".EQ."
  op = '"and" => '".AND."
  op = '"or" => '".OR."
  op = '"~" => '".NOT."
  fortranifyIntrinsicFunctionName(op,nargs)

fortranifyIntrinsicFunctionName(op,nargs) ==
  $useIntrinsicFunctions =>
    intrinsic := if op = '"acos" then '"ACOS"
    else if op = '"asin" then '"ASIN"
    else if op = '"atan" then
      nargs = 2 => '"ATAN2"
      '"ATAN"
    else if op = '"cos" then '"COS"
    else if op = '"cosh" then '"COSH"
    else if op = '"cot" then '"COTAN"
    else if op = '"erf" then '"ERF"
    else if op = '"exp" then '"EXP"
    else if op = '"log" then '"LOG"
    else if op = '"log10" then '"LOG10"
    else if op = '"sin" then '"SIN"
    else if op = '"sinh" then '"SINH"
    else if op = '"sqrt" then '"SQRT"
    else if op = '"tan" then '"TAN"
    else if op = '"tanh" then '"TANH"
    intrinsic =>
      $intrinsics := ADJOIN(intrinsic,$intrinsics)
      intrinsic
    op
  $fortranPrecision = 'double =>
    op = '"acos" => '"DACOS"
    op = '"asin" => '"DASIN"
    op = '"atan" =>
      nargs = 2 => '"DATAN2"
      '"DATAN"
    op = '"cos" => '"DCOS"
    op = '"cosh" => '"DCOSH"
    op = '"cot" => '"DCOTAN"
    op = '"erf" => '"DERF"
    op = '"exp" => '"DEXP"
    op = '"log" => '"DLOG"
    op = '"log10" => '"DLOG10"
    op = '"sin" => '"DSIN"
    op = '"sinh" => '"DSINH"
    op = '"sqrt" => '"DSQRT"
    op = '"tan" => '"DTAN"
    op = '"tanh" => '"DTANH"
    op = '"abs" => '"DABS"
    op
  op = '"acos" => '"ACOS"
  op = '"asin" => '"ASIN"
  op = '"atan" =>
    nargs = 2 => '"ATAN2"
    '"ATAN"
  op = '"cos" => '"COS"
  op = '"cosh" => '"COSH"
  op = '"cot" => '"COTAN"
  op = '"erf" => '"ERF"
  op = '"exp" => '"EXP"
  op = '"log" => '"ALOG"
  op = '"log10" => '"ALOG10"
  op = '"sin" => '"SIN"
  op = '"sinh" => '"SINH"
  op = '"sqrt" => '"SQRT"
  op = '"tan" => '"TAN"
  op = '"tanh" => '"TANH"
  op = '"abs" => '"ABS"
  op

--------------------------format.boot------------------------------------------

-- These functions are all used by FortranCode and FortranProgram.
-- Those used by FortranCode have been changed to return a list of
-- lines rather than print them directly, thus allowing us to catch
-- and display type declarations for temporary variables.
--  MCD 25/3/93

indentFortLevel(i) ==
  $maximumFortranExpressionLength := $maximumFortranExpressionLength -2*i
  $fortIndent := $fortIndent + 2*i

changeExprLength(i) ==
  $maximumFortranExpressionLength := $maximumFortranExpressionLength + i

fortFormatDo(var,lo,hi,incr,lab) ==
  $fortError : local := nil
  $fortInts2Floats : local := nil
  incr=1 =>
    checkLines fortran2Lines
      ['"DO ",STRINGIMAGE lab,'" ",STRINGIMAGE var,'"=",:statement2Fortran lo,_
       '",", :statement2Fortran hi]
  checkLines fortran2Lines
    ['"DO ",STRINGIMAGE lab,'" ",STRINGIMAGE var,'"=",:statement2Fortran lo,_
     '",", :statement2Fortran hi,'",",:statement2Fortran incr]

fortFormatIfGoto(switch,label) ==
  changeExprLength(-8) -- Leave room for IF( ... )GOTO
  $fortError : local := nil
  if first(switch) = "NULL" then switch := second switch
  r := reverse! statement2Fortran switch
  changeExprLength(8)
  l := ['")GOTO ",STRINGIMAGE label]
  while r and not(first(r) = '"%l") repeat
    l := [first(r),:l]
    r := rest(r)
  checkLines fortran2Lines reverse! [:reverse! l,'"IF(",:r]

fortFormatLabelledIfGoto(switch,label1,label2) ==
  changeExprLength(-8) -- Leave room for IF( ... )GOTO
  $fortError : local := nil
  if LISTP(switch) and first(switch) = "NULL" then switch := second switch
  r := reverse! statement2Fortran switch
  changeExprLength(8)
  l := ['")GOTO ",STRINGIMAGE label2]
  while r and not(first(r) = '"%l") repeat
    l := [first(r),:l]
    r := rest(r)
  labString := STRINGIMAGE label1
  for i in #(labString)..5 repeat labString := strconc(labString,'" ")
  lines := fortran2Lines reverse! [:reverse! l,'"IF(",:r]
  lines := [strconc(labString,subSequence(first lines,6)),:rest lines]
  checkLines lines

fortFormatIf(switch) ==
  changeExprLength(-8) -- Leave room for IF( ... )THEN
  $fortError : local := nil
  if LISTP(switch) and first(switch) = "NULL" then switch := second switch
  r := reverse! statement2Fortran switch
  changeExprLength(8)
  l := ['")THEN"]
  while r and not(first(r) = '"%l") repeat
    l := [first(r),:l]
    r := rest(r)
  checkLines fortran2Lines reverse! [:reverse! l,'"IF(",:r]

fortFormatElseIf(switch) ==
  -- Leave room for IF( ... )THEN
  changeExprLength(-12)
  $fortError : local := nil
  if LISTP(switch) and first(switch) = "NULL" then switch := second switch
  r := reverse! statement2Fortran switch
  changeExprLength(12)
  l := ['")THEN"]
  while r and not(first(r) = '"%l") repeat
    l := [first(r),:l]
    r := rest(r)
  checkLines fortran2Lines reverse! [:reverse! l,'"ELSEIF(",:r]

fortFormatHead(returnType,name,args) ==
  $fortError : local := nil
  $fortranSegment : local := nil
  -- if returnType = '"_"_(_)_"" then 
  if returnType = '"void" then
    asp := ['"SUBROUTINE "]
    changeExprLength(l := -11)
  else
    asp := [s := checkType STRINGIMAGE returnType,'" FUNCTION "]
    changeExprLength(l := -10-#(s))
  displayLines fortran2Lines [:asp,:statement2Fortran [name,:CDADR args] ]
  changeExprLength(-l)

checkType ty ==
  ty := stringUpcase STRINGIMAGE ty
  $fortranPrecision = "double" =>
    ty = '"REAL" => '"DOUBLE PRECISION"
    ty = '"COMPLEX" => '"DOUBLE COMPLEX"
    ty
  ty

mkParameterList l ==
  [par2string(u) for u in l] where par2string u ==
      atom(u) => STRINGIMAGE u
      u := rest second u
      apply(function strconc,[STRINGIMAGE(first u),'"(",_
               :rest [:['",",:statement2Fortran(v)] for v in rest u],'")"])

macro nameLen n ==
 +/[1+#(u) for u in n]

fortFormatTypes(typeName,names) ==
  null names => return nil
  $fortError : local := nil
  $fortranSegment : local := nil
  $fortInts2Floats : local := nil
  typeName := checkType typeName
  typeName = '"CHARACTER" =>
    fortFormatCharacterTypes([unravel(u) for u in names])
      where unravel u ==
              atom u => u
              CDADR u
  fortFormatTypes1(typeName,mkParameterList names)

fortFormatTypes1(typeName,names) ==
  l := $maximumFortranExpressionLength-1-#(typeName)
  while nameLen(names) > l repeat
    n := []
    ln := 0
    while (ln := ln + #(first names) + 1) < l repeat
      n := [first names,:n]
      names := rest names
    displayLines fortran2Lines [typeName,'" ",:addCommas n]
  displayLines fortran2Lines [typeName,'" ",:addCommas names]

insertEntry(size,el,aList) ==
  entry := assoc(size,aList)
  null entry => [[size,:[el]],:aList]
  entry.rest := [el,:rest entry]
  aList

fortFormatCharacterTypes(names) ==
  sortedByLength := []
  genuineArrays  := []
  for u in names repeat
    atom u => sortedByLength := insertEntry(0,u,sortedByLength)
    #u=2 => sortedByLength := insertEntry(second u,first u,sortedByLength)
    genuineArrays := [u,:genuineArrays]
  for u in sortedByLength repeat
    fortFormatTypes1(mkCharName first u, [STRINGIMAGE(s) for s in rest(u)]) where
       mkCharName v == strconc("CHARACTER*(",STRINGIMAGE v,")")
  if (not null genuineArrays) then
    fortFormatTypes1('"CHARACTER",mkParameterList2 genuineArrays) where
       mkParameterList2 l ==
         [par2string(u) for u in l] where par2string u ==
             apply(function strconc,[STRINGIMAGE(first u),'"(",_
                      :rest [:['",",:statement2Fortran(v)] for v in rest u],'")"])

fortFormatIntrinsics(l) ==
  $fortError : local := nil
  null l => return nil
  displayLines fortran2Lines ['"INTRINSIC ",:addCommas(l)]
  
 
------------------ fortDec.boot --------------------
 
-- This file contains the stuff for creating and updating the Fortran symbol
-- table.
 
currentSP () ==
  -- Return the name of the current subprogram being generated
  $currentSubprogram or "MAIN"
 
updateSymbolTable(name,type) ==
    fun := ['$elt,'SYMS,'declare!]
    coercion := ['_:_:,STRING type,'FST]
    $insideCompileBodyIfTrue: local := false
    interpret([fun,["QUOTE",name],coercion])
 
addCommas l ==
  not l => nil
  r := [STRINGIMAGE first l]
  for e in rest l repeat r := [STRINGIMAGE e,'",",:r]
  reverse r

$intrinsics := []
initialiseIntrinsicList() == 
  $intrinsics := []

getIntrinsicList() ==
  $intrinsics

 
-------------------- fortPre.boot ------------------
 
fortPre l ==
  -- Essentially, the idea is to fix things so that we know what size of
  -- expression we will generate, which helps segment large expressions
  -- and do transformations to double precision output etc..
  $exprStack : local := nil -- sometimes we will add elements to this in
                            -- other functions, for example when extracing
                            -- lists etc.
  for e in l repeat if new := fortPre1 e then
     $exprStack := [new,:$exprStack]
  reverse $exprStack
 
fortPre1 e ==
  -- replace spad function names by Fortran equivalents
  -- where appropriate, replace integers by floats
  -- extract complex numbers
  -- replace powers of %e by calls to EXP
  -- replace x**2 by x*x etc.
  -- replace ROOT by either SQRT or **(1./ ... )
  -- replace N-ary by binary functions
  -- strip the '%' character off objects like %pi etc..
  null e => nil
  integer?(e) =>
    $fortInts2Floats =>
      e >= 0 => fix2FortranFloat(e)
      ['"-", fix2FortranFloat(-e)]
    e
  isFloat(e) => checkPrecision(e)
  -- Keep strings as strings:
  -- string?(e) => strconc(STRING(34),e,STRING(34))
  string?(e) => e
  e = "%e" => fortPre1 ["exp" , 1]
  imags := ['"%i","%i"]
  member(e, imags) => ['"CMPLX",fortPre1(0),fortPre1(1)]
  -- other special objects
  STRINGIMAGE(e).0 = char "%" => subSequence(STRINGIMAGE e,1)
  atom e => e
  [op, :args] := e
  member(op,["**" , '"**"]) =>
    [rand,exponent] := args
    rand = "%e" => fortPre1 ["exp", exponent]
    (IDENTP rand or string? rand) and exponent=2 => ["*", rand, rand]
    (integer? exponent and abs(exponent) < 32768) => ["**",fortPre1 rand,exponent]
    ["**", fortPre1 rand,fortPre1 exponent]
  op = "ROOT" =>
    #args = 1 => fortPreRoot ["sqrt", first args]
    [ "**" , fortPreRoot first args , [ "/" , fortPreRoot(1), fortPreRoot second args] ]
  if member(op,['"OVER", "OVER"]) then op := '"/"
  specialOps  := '(BRACKET BRACE SUB AGGLST SUPERSUB MATRIX SEGMENT ALTSUPERSUB
                   PAREN CONCAT CONCATB QUOTE STRING SIGMA  STEP IN SIGMA2
                   INTSIGN  PI PI2 INDEFINTEGRAL)
  symbolMember?(op,specialOps) => exp2FortSpecial(op,args,#args)
  member(op,['"*", "*", '"+", "+", '"-", "-"]) and (#args > 2) =>
    binaryExpr := fortPre1 [op,first args, second args]
    for i in 3..#args repeat
      binaryExpr := [op,binaryExpr,fortPre1 NTH(i-1,args)]
    binaryExpr
  -- Now look for any complex objects
  #args = 2 =>
    [arg1,arg2] := args
    member(op, ["*",'"*"]) and member(arg2, imags) => 
      ['"CMPLX",fortPre1(0),fortPre1(arg1)]
    member(op,["+",'"+"]) and member(arg2,imags) => 
      ['"CMPLX",fortPre1(arg1),fortPre1(1)]
    member(op,["+",'"+"]) and arg2 is [mop,m1,m2] and member(mop,["*",'"*"]) =>
      member(m2,imags) => ['"CMPLX",fortPre1(arg1),fortPre1(m1)]
      member(m1,imags) => ['"CMPLX",fortPre1(arg1),fortPre1(m2)]
      ["+",fortPre1 arg1,fortPre1 arg2]
    member(op,["+",'"+"]) and arg1 is [mop,m1,m2] and member(mop,["*",'"*"]) =>
      member(m2,imags) => ['"CMPLX",fortPre1(arg2),fortPre1(m1)]
      member(m1,imags) => ['"CMPLX",fortPre1(arg2),fortPre1(m2)]
      ["+",fortPre1 arg1,fortPre1 arg2]
    mkFortFn(op,args,2)
  mkFortFn(op,args,#args)

fortPreRoot e ==
-- To set $fortInts2Floats 
  $fortInts2Floats : local := true
  fortPre1 e
 
fix2FortranFloat e ==
  -- Return a Fortran float for a given integer.
  $fortranPrecision = "double" => strconc(STRINGIMAGE(e),".0D0")
  strconc(STRINGIMAGE(e),'".")
 
isFloat e ==
  FLOATP(e) or string?(e) and FIND(char ".",e)
 
removeCharFromString(c,s) ==
  -- find c's position in s.
  k := nil
  for i in 0..maxIndex s while k = nil repeat
    stringChar(s,i) = c => k := i
  k = nil => s
  -- make a copy without c.
  s' := makeString(#s - 1)
  for i in 0..(k-1) repeat
    stringChar(s',i) := stringChar(s,i)
  for i in k..maxIndex s' repeat
    stringChar(s',i) := stringChar(s,i+1)
  s'

checkPrecision e ==
  -- Do we have a string?
  string? e and codePoint stringChar(e,0) = 34 => e
  e := removeCharFromString(char " ",STRINGIMAGE e)
  $fortranPrecision = "double" =>
    iPart := subSequence(e,0,(period:=POSITION(char ".",e))+1)
    expt  := if ePos := POSITION(char "E",e) then subSequence(e,ePos+1) else "0"
    rPart :=
      ePos => subSequence(e,period+1,ePos)
      period+1 < # e => subSequence(e,period+1)
      "0"
    strconc(iPart,rPart,'"D",expt)
  e
 
----------------- segment.boot -----------------------
 
fortExpSize e ==
  -- computes a tree reflecting the number of characters of the printed
  -- expression.
  -- The first element of a list is the "total so far", while subsequent
  -- elements are the sizes of the components.
  --
  -- This function overestimates the size because it assumes that e.g.
  -- (+ x (+ y z)) will be printed as "x+(y+z)" rather than "x+y+z"
  -- which is the actual case.
  atom e => # STRINGIMAGE e
  #e > 3 => 2+fortSize [fortExpSize x for x in e]
  #e < 3 => 2+fortSize [fortExpSize x for x in e]
  [op,arg1,arg2] := e
  op := STRINGIMAGE op
  op = '"CMPLX" => 3+fortSize [fortExpSize arg1,fortExpSize arg2]
  narys := ['"+",'"*"] -- those nary ops we changed to binary
  member(op,narys) =>
    LISTP arg1 and not(op=STRINGIMAGE first arg1) =>
      2+fortSize [fortExpSize x for x in e]
    LISTP arg2 and not(op=STRINGIMAGE first arg2) =>
      2+fortSize [fortExpSize x for x in e]
    1+fortSize [fortExpSize arg1,fortExpSize arg2]
  2+fortSize [fortExpSize x for x in e]
 
fortSize e ==
  +/[elen u for u in e] where
    elen z ==
      atom z => z
      first z
 
tempLen () == 1 + # STRINGIMAGE $exp2FortTempVarIndex
 
segment l ==
  not $fortranSegment => l
  s := nil
  for e in l repeat
    if LISTP(e) and first member(e,["=",'"="]) then
      var := NTH(1,e)
      exprs := segment1(third e,
                        $maximumFortranExpressionLength-1-fortExpSize var)
      s:= [:[['"=",var,first exprs],:rest exprs],:s]
    else if LISTP(e) and first e = '"RETURN" then
      exprs := segment1(second e,
                        $maximumFortranExpressionLength-2-fortExpSize first e)
      s := [:[[first e,first exprs],:rest exprs],:s]
    else s:= [e,:s]
  reverse s
 
segment1(e,maxSize) ==
  (size := fortExpSize e) < maxSize => [e]
  expressions := nil;
  newE := [first e]
  -- Assume we have to replace each argument with a temporary variable, and
  -- that the temporary variable may be larger than we expect.
  safeSize := maxSize -  (#e-1)*(tempLen()+1) - fortExpSize newE
  for i in 2..#e repeat
    subSize := fortExpSize NTH(i-1,e)
    -- We could have a check here for symbols which are simply too big
    -- for Fortran (i.e. more than the maximum practical expression length)
    subSize <= safeSize =>
      safeSize := safeSize - subSize
      newE := [:newE,NTH(i-1,e)]
    -- this ones too big.
    exprs := segment2(NTH(i-1,e),safeSize)
    expressions := [:(rest exprs),:expressions]
    newE := [:newE,(first exprs)]
    safeSize := safeSize - fortExpSize first exprs
  [newE,:expressions]
 
segment2(e,topSize) ==
  maxSize := $maximumFortranExpressionLength -tempLen()-1
  atom(e) => [e]
  exprs := nil
  newE  := [first e]
  topSize := topSize - fortExpSize newE
  for i in 2..#e repeat
    subE := NTH(i-1,e)
    (subSize := fortExpSize subE) > maxSize =>
      subE := segment2(subE,maxSize)
      exprs := [:(rest subE),:exprs]
      if (subSize := fortExpSize first subE) <= topSize then
        newE := [:newE,first subE]
        topSize := topSize - subSize
      else
        newVar := newFortranTempVar()
        newE := [:newE,newVar]
        exprs:=[['"=",newVar,first subE],:exprs]
        topSize := topSize - fortExpSize newVar
    newE := [:newE,subE]
    topSize := topSize - subSize
  topSize > 0 => [newE,:exprs]
  newVar := newFortranTempVar()
  [newVar,['"=",newVar,newE],:exprs]