aboutsummaryrefslogtreecommitdiff
path: root/src/input/repa6.input.pamphlet
blob: 769c6d65db85f2610a5ee3b6594b59cf897a7509 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/input repa6.input}
\author{The Axiom Team}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
<<*>>=
)cls

-- This file demonstrates Representation Theory in Scratchpad
-- using the packages REP1, REP2, IRSN and SGCF, which are the
-- abbreviations for RepresentationPackage1, RepresentationPackage2
-- IrrRepSymNatPackage and SymmetricGroupCombinatoricFunctions.
 
-- authors: Holger Gollan, Johannes Grabmeier
-- release 1.0  09/30/87
-- release 2.0  11/10/88: J. Grabmeier: add functions from IRSN
-- release 2.1  08/04/89: J. Grabmeier: adjusting to new PERM
--   and modified REP1
-- release 2.2  06/05/89: J. Grabmeier: adjusting to new algebra
-- release 2.3  08/20/89: J. Grabmeier: minor adjustments
 
-- In the sequel we show how to get all 2-modular irreducible
-- representations of the alternating group A6.
 
-- We generate A6 by the permutations threecycle x=(1,2,3)
-- and the 5-cycle y=(2,3,4,5,6)
 
genA6 : List PERM INT := [cycle [1,2,3], cycle [2,3,4,5,6]]
 
-- pRA6 is the permutation representation over the Integers...
 
pRA6 := permutationRepresentation (genA6, 6)
 
-- ... and pRA6m2 is the permutation representation over PrimeField 2:
 
pRA6m2 : List Matrix PrimeField 2 := pRA6
 
-- Now try to split pRA6m2:
 
sp0 := meatAxe pRA6m2
 
-- We have found the trivial module as a factormodule
-- and a 5-dimensional submodule.
 
dA6d1 := sp0.2
 
-- Try to split again...
 
sp1 := meatAxe sp0.1
 
-- ... and find a 4-dimensional submodule, say dA6d4a, and the
-- trivial one again.
 
dA6d4a := sp1.2
 
-- Now we want to test, whether dA6d4a is absolutely irreducible...
 
isAbsolutelyIrreducible? dA6d4a
 
-- ...and see: dA6d4a is absolutely irreducible.
-- So we have found a second irreducible representation.
 
-- Now construct a representation from reducing an irreducible one
-- of the symmetric group S_6 over the integers taken mod 2
-- What is the degree of the representation belonging to partition
-- [2,2,1,1]?
 
 
-- lambda : PRTITION := partition [2,2,1,1]
lambda := [2,2,1,1]
dimIrrRepSym lambda
 
-- now create the restriction to A6:
 
d2211  := irrRepSymNat(lambda, genA6)
 
-- ... and d2211m2 is the representation over PrimeField 2:
 
d2211m2 : List Matrix PrimeField 2 := d2211
 
-- and split it:
 
sp2 := meatAxe d2211m2
 
-- A 5 and a 4-dimensional one.
 
-- we take the 4-dimensional one, say dA6d4b:
 
dA6d4b := sp2.1
 
-- This is absolutely irreducible, too ...
 
isAbsolutelyIrreducible? dA6d4b
 
-- ... and dA6d4a and dA6d4b are not equivalent:
 
areEquivalent? ( dA6d4a , dA6d4b )
 
-- So the third irreducible representation is found.
 
-- Now construct a new representation with the help of the tensorproduct
 
dA6d16 := tensorProduct ( dA6d4a , dA6d4b )
 
-- and try to split it...
 
sp3 := meatAxe dA6d16
 
-- The representation is irreducible, but may be not
-- absolutely irreducible.
 
isAbsolutelyIrreducible? dA6d16
 
-- So let's try the same over the field with 4 elements:
 
gf4 := FiniteField(2,2)
 
dA6d16gf4 : List Matrix gf4 := dA6d16
sp4 := meatAxe dA6d16gf4
 
-- Now we find two 8-dimensional ones, dA6d8a and dA6d8b.
 
dA6d8a : List Matrix gf4  := sp4.1
dA6d8b : List Matrix gf4  := sp4.2
 
-- Both are absolutely irreducible...
 
isAbsolutelyIrreducible? dA6d8a
isAbsolutelyIrreducible? dA6d8b
 
-- and they are not equivalent...
 
areEquivalent? ( dA6d8a, dA6d8b )
 
-- So we have found five absolutely irreducible representations of A6
-- in characteristic 2.
 
-- The theory tells us that there are no more irreducible ones.
-- Here again are all absolutely irreducible 2-modular
-- representations of A6
 
dA6d1
dA6d4a
dA6d4b
dA6d8a
dA6d8b
 
-- And here again is the irreducible, but not absolutely irreducible
-- representations of A6 over PrimeField 2
 
dA6d16
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}