aboutsummaryrefslogtreecommitdiff
path: root/src/input/graphics.input.pamphlet
blob: 841bced2a37c25f483fb79b6482b7fdad3efe1fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/input graphics.input}
\author{The Axiom Team}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
<<*>>=

-- Input for page OneVariableGraphicsExamplePage
)clear all

draw(sin tan x - tan sin x, x = 0..6)
draw(sin x + cos x, x = 0..2*%pi)
draw(sin(1/x), x = -1..1)
draw(x * sin(1/x), x = -1..1)
All

-- Input for page ViewportPage
)clear all

v := draw(x*x-y*y,x=-1..1,y=-1..1)
write(v,"saddle","pixmap")

-- Input for page ImplicitCurveGraphicsExamplePage
)clear all

draw(x * y = 1, x, y, range == [-3..3, -3..3])
draw(y**2 + y = x**3 - x, x, y, range == [-2..2, -2..1])
p := ((x**2 + y**2 + 1) - 8*x)**2 - (8*(x**2 + y**2 + 1) - 4*x - 1)
draw(p = 0, x, y, range == [-1..11, -7..7], title == "Cartesian Ovals")
q := (x**2 + y**2 + 7**2)**2 - (6**4 + 4*7**2*x**2)
draw(q = 0, x, y, range == [-10..10, -4..4], title == "Cassinian oval with two loops")
All

-- Input for page OneVariableGraphicsPage
)clear all

draw(sin(tan(x)) - tan(sin(x)),x = 0..6)
draw(sin(tan(x)) - tan(sin(x)),x = 10..16,title == "y = sin tan x - tan sin x")
f(x) == (x-1)*(x-2)*(x-3)
draw(f, 0..2, title == "y = f(x) on [0,2]")
draw(f, 0..4,title == "y = f(x) on [0,4]")

-- Input for page PolarGraphicsExamplePage
)clear all

draw(1,t = 0..2*%pi, coordinates == polar)
draw(t,t = 0..100, coordinates == polar)
draw(sin(4*t), t = 0..2*%pi, coordinates == polar)
draw(2 + 3 * sin t, t = 0..2*%pi, coordinates == polar)
All

-- Input for page ParametricCurveGraphicsExamplePage
)clear all

draw(curve(cos(t/(1+sin(t)**2)), sin(t)*cos(t)/(1+sin(t)**2)), t = -%pi..%pi)
draw(curve(9*sin(3*t/4), 8*sin(t)), t = -4*%pi..4*%pi)
draw(curve(sin(t)*sin(2*t)*sin(3*t), sin(4*t)*sin(5*t)*sin(6*t)),t = 0..2*%pi)
draw(curve(cos(4*t)*cos(7*t), cos(4*t)*sin(7*t)), t = 0..2*%pi)
All

-- Input for page PolarGraphicsPage
)clear all

draw(1,t = 0..2*%pi,coordinates == polar, title == "The Unit Circle")
draw(sin(17*t), t = 0..2*%pi, coordinates == polar, title == "A Petal Curve")
f(t) == cos(4*t/7)
draw(f, t = 0..2*%pi, coordinates == polar)
draw(f, t = 0..14*%pi, coordinates == polar)

-- Input for page ParametricCurveGraphicsPage
)clear all

draw(curve(sin(t)*sin(2*t)*sin(3*t), sin(4*t)*sin(5*t)*sin(6*t)), t = 0..2*%pi)
draw(curve(cos(t), sin(t)), t = 0..2*%pi, title == "The Unit Circle")
f(t) == sin(3*t/4)
g(t) == sin(t)
draw(curve(f,g), 0..%pi)
draw(cruve(f,g) ,%pi..2*%pi)
draw(curve(f,g), -4*%pi..4*%pi)

-- Input for page AssortedGraphicsExamplePage
)clear all

draw(sin(x * y), x = -2.5..2.5, y = -2.5..2.5)
draw(sin tan x - tan sin x,x = 0..6)
draw(curve(sin(t)*sin(2*t), sin(3*t)*sin(4*t)), t = 0..2*%pi)
draw(curve(sin(t)*sin(2*t), sin(3*t)*sin(4*t), sin(5*t)*sin(6*t)), t = 0..2*%pi)
draw(sin(17*t), t = 0..2*%pi, coordinates == polar)
draw(y**2 + y = x**3 - x, x, y,range == [-2..2,-2..1])
All
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}