1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/input gonshor.input}
\author{The Axiom Team}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{License}
<<license>>=
--Copyright The Numerical Algorithms Group Limited 1991.
@
<<*>>=
<<license>>
------------- Some examples of algebras in genetics -------------
-- Literature:
-- [WB] A. Woerz-Busekros: Algebras in Genetics, LNB 36,
-- Springer-Verlag, Berlin etc. 1980.
--------------- Commutative, non-associative algebras --
-- A Gonshor genetic algebra ([WB], p. 41-42) of dimension 4:
-- =========================================================
)clear all
-- The coefficient ring:
R := FRAC POLY INT
-- The following multiplication constants may be chosen arbitrarily
-- (notice that we write ckij for c_(i,j)^k):
(c100, c101, _
c200, c201, c202, c211, _
c300, c301, c302, c303, c311, c312, c322) : R
----------------------------------------------------------------
c100 := 1 ; c101 := -1 ;
----------------------------------------------------------------
c200 := 0 ; c201 := 1 ; c202 := -1 ;
c211 := 2 ;
----------------------------------------------------------------
c300 := 1 ; c301 := 0 ; c302 := -1 ; c303 := 1 ;
c311 := 1 ; c312 := 0 ;
c322 := 2 ;
----------------------------------------------------------------
-- The matrices of the multiplication constants:
gonshor : List SquareMatrix(4,R) :=
[matrix [ [1, 0, 0, 0], [0, 0, 0, 0],_
[0, 0, 0, 0], [0, 0, 0, 0] ],_
matrix [ [c100, c101, 0, 0], [c101, 0, 0, 0],_
[0, 0, 0, 0], [0, 0, 0, 0] ],_
matrix [ [c200, c201, c202, 0], [c201, c211, 0, 0],_
[c202, 0, 0, 0], [0, 0, 0, 0] ],_
matrix [ [c300, c301, c302, c303], [c301, c311, c312, 0],_
[c302, c312, c322, 0], [c303, 0, 0, 0] ] ] ;
basisSymbols : List Symbol := [subscript(e,[i]) for i in 0..3]
GonshorGenetic := ALGSC(R, 4, basisSymbols, gonshor)
commutative?()$GonshorGenetic
associative?()$GonshorGenetic
-- The canonical basis:
e0 : GonshorGenetic := [1, 0, 0, 0] :: Vector R
e1 : GonshorGenetic := [0, 1, 0, 0] :: Vector R
e2 : GonshorGenetic := [0, 0, 1, 0] :: Vector R
e3 : GonshorGenetic := [0, 0, 0, 1] :: Vector R
-- A generic element of the algebra:
x : GonshorGenetic := x0*e0 + x1*e1 + x2*e2 + x3*e3
-- The matrix of the left multiplication with x :
Lx := leftRegularRepresentation x
-- leftRegularRepresentationt 8 : GonshorGenetic -> R be the weight homomorphism
-- defined by 8(e0) := 1 and 8(ei) := 0 for i = 1,2,3 .
-- The coefficients of the characteristic polynomial
-- of Lx depend only on 8(x) = x0 :
p := characteristicPolynomial(Lx,Y)
-- The left minimal polynomial of x divides Y * p(Y) :
leftMinimalPolynomial x
)clear prop A a b c r s
A := GonshorGenetic
a := x
b := (1/4)*e1 + (1/5)*e2 + (3/20)*e3 + (2/5)*e0
c := (1/3)*e1 + (1/7)*e2 + (8/21)*e3 + (1/7)*e0
r : R := r
s : R := s
b*c
(b*c)*b
b*(c*b)
-- A: Algebra
-- a,b,c : A
-- r,s : R
)clear prop AP
AP := ALGPKG(R,A)
r*a
a*r
a*b
b*c
12 * c
(-3) * a
d := a ** 12
-d
a + b
d-c
(a*(a*a) = leftPower(a,3)) :: Boolean
(a ** 11 = (a**8 * a**2) * a) :: Boolean
(a ** 11 = a**8 * (a**2 * a)) :: Boolean
zero := 0$A
zero : A := 0
alternative?()$A
antiCommutative?()$A
associative?()$A
commutative?()$A
commutator(a,b)
antiCommutator(a,b)
associator(a,b,c)
basis()$A
n := rank()$A
v : Vector R := [i for i in 1..n]
g : A := represents v
coordinates a
coordinates [a,b]
a.3
flexible?()$A
leftAlternative?()$A
rightAlternative?()$A
sB := someBasis()$A
zero? a
associatorDependence()$A
--conditionsForIdempotents()$A
jacobiIdentity?()$A
jordanAlgebra?()$A
jordanAdmissible?()$A
lieAdmissible?()$A
--conditionsForIdempotents sB
b2 := [reduce(+,[sB.i for i in 1..k]) for k in 1..n]
coordinates (a ,b2 :: Vector A)
coordinates ([a,b] ,bb := (b2 :: Vector A))
leftMinimalPolynomial a
leftPower (a,10)
rightPower(a,10)
leftRegularRepresentation a
leftRegularRepresentation (a,bb)
leftUnit()$A
represents (v,bb)
rightMinimalPolynomial a
rightRegularRepresentation a
rightRegularRepresentation (a,bb)
rightUnit()$A
structuralConstants()$A
structuralConstants(bb)
unit()$A
-- functions from ALGPKG
biRank a
leftRank a
doubleRank a
rightRank a
weakBiRank a
basisOfCenter()$AP
basisOfLeftNucleus()$AP
basisOfNucleus()$AP
basisOfRightNucleus()$AP
basisOfCentroid()$AP
basisOfCommutingElements()$AP
basisOfLeftNucloid()$AP
basisOfMiddleNucleus()$AP
basisOfRightNucloid()$AP
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|