blob: 66cd3f731b883dd43e98583495cc3fe44dfc154d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/input fparfrac.input}
\author{The Axiom Team}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{License}
<<license>>=
--Copyright The Numerical Algorithms Group Limited 1994.
@
<<*>>=
<<license>>
---------------------------- fparfrac.input ---------------------------------
-- This file demonstrates the factor-free conversion to full partial fractions.
)cl all
Q := FRAC INT
Px := UP(x, Q)
Fx := FRAC Px
-- here is a simple-looking function
f:Fx := 36 / (x**5-2*x**4-2*x**3+4*x**2+x-2)
-- use fullPartialFraction to convert to the type FPARFRAC
g := fullPartialFraction f
-- use :: to convert back to a rational function
g::Fx
-- Full partial fractions differentiate faster than rational functions:
g5 := D(g, 5)
f5 := D(f, 5)
-- check that the two forms represent the same function
g5::Fx - f5
-- Here are more complicated examples:
f:Fx := (x**5 * (x-1)) / ((x**2 + x + 1)**2 * (x-2)**3)
g := fullPartialFraction f
g::Fx - f
f:Fx := (2*x**7-7*x**5+26*x**3+8*x)/(x**8-5*x**6+6*x**4+4*x**2-8)
g := fullPartialFraction f
g::Fx - f
f:Fx := x**3/(x**21+2*x**20+4*x**19+7*x**18+10*x**17+17*x**16+22*x**15+30*x**14
+36*x**13+40*x**12+47*x**11+46*x**10+49*x**9+43*x**8+38*x**7
+32*x**6+23*x**5+19*x**4+10*x**3+7*x**2+2*x+1)
g := fullPartialFraction f
-- this verification takes much longer than the conversion to partial fractions
g::Fx - f
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|