1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/input elfuts.input}
\author{The Axiom Team}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{License}
<<license>>=
--Copyright The Numerical Algorithms Group Limited 1994.
@
<<*>>=
<<license>>
)cl all
--demo of Jacobian elliptic functions expanded as power series
)set streams calculate 10
)expose ELFUTS
macro RN == FRAC INT
macro QF == FRAC
xx:UTS(RN,'x,0):=x
sn(xx,1::RN)
cn(xx,1::RN)
dn(xx,1::RN)
yy:UTS(FRAC UP(k,RN),'y,0):=y
snn:=sn(yy,k::QF UP(k,RN))
cnn:=cn(yy,k::QF UP(k,RN))
dnn:=dn(yy,k::QF UP(k,RN))
snn**2+cnn**2
ksquared:=(k::UP(k,RN))**2
dnn**2+ksquared*snn**2
(differentiate snn)**2
(1-snn**2)*(1-ksquared*snn**2)
(differentiate cnn)**2
(1-cnn**2)*(1-ksquared+ksquared*cnn**2)
(differentiate dnn)**2
(1-dnn**2)*(dnn**2-1+ksquared)
kkk:=integrate(1/((1-yy**2)*(1-ksquared*yy**2))**(1/2))
revert kkk
snn
-- Theta-functions expanded as power series
--q0=*/[1-q**2*n for n in 1..]
--q1=*/[1+q**2*n for n in 1..]
--q2=*/[1+q**(2*n-1) for n in 1..]
--q3=*/[1-q**(2*n-1) for n in 1..]
eprod x==exp evenlambert log x
qq:UTS(RN,'q,0):=q
q0:=eprod(1-qq)
q1:=eprod(1+qq)
oprod x == exp oddlambert log x
q2:=oprod(1+qq)
q3:=oprod(1-qq)
q1*q2*q3
q2**8-q3**8
16*qq*q1**8
--(q1**2/q2**2)**2
--(q3**2/q2**2)**2
q0**3
q1**2*q0
q2**2*q0
q3**2*q0
qqq:UTS(FRAC UP(a,RN),'q,0):=q
a:=a::FRAC UP(a,RN)
--Jacobi's triple product
eprod(1-qqq)*oprod(1-a*qqq)*oprod(1-qqq/a)
sq:=ksquared*snn**2
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|