aboutsummaryrefslogtreecommitdiff
path: root/src/input/asec.input.pamphlet
blob: 76ddb3fc6b34850780561ad6cceb70d5ec2e3f81 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
\documentclass{article}
\usepackage{axiom}
\usepackage{amssymb}
\begin{document}
\title{\$SPAD/src/input asec.input}
\author{Timothy Daly}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{ASC.1 Introduction}

Let $x$ be a complex variable of $\mathbb{C} \setminus \{0\}$.The
function Inverse Secant (noted {\tt asec}) is defined by
the following second order differential equation

$$\left(2 x^{2} - 1\right) \frac{\partial y (x)}{\partial x} + 
\left(x^{3} - x\right) \frac{\partial^{2} y (x)}{\partial x^{2}} =0.$$

The initial conditions at $0$ are not simple to state, 
since $0$ is a (regular) singular point.

\section{ASC.2 Series and asymptotic expansions}
\subsection{ASC.2.1 Asymptotic expansion at $-1$}
\subsubsection{ASC.2.1.1 First terms}

$$
\begin{array}{cc}
& asec(x)\approx (\pi\ldots) + \sqrt{x + 1} 
\left(-i\sqrt{2} - \frac{5 i}{12} (x + 1) \sqrt{2} - 
\frac{43 i}{160} (x + 1)^{2} \sqrt{2}\right.  \\
& \quad{}\quad{}- \frac{177 i}{896} (x + 1)^{3} \sqrt{2} - 
\frac{2867 i}{18432} (x + 1)^{4} \sqrt{2} -  \\
& \quad{}\quad{}\frac{11531 i}{90112} (x + 1)^{5} \sqrt{2} - 
\frac{92479 i}{851968} (x + 1)^{6} \sqrt{2} -  \\
& \left.\quad{}\quad{}\frac{74069 i}{786432} (x + 1)^{7} \sqrt{2} - 
\frac{11857475 i}{142606336} (x + 1)^{8} \sqrt{2}\ldots\right).
\end{array}
$$

\subsection{ASC.2.1 Asymptotic expansion at $0$}
\subsubsection{ASC.2.2.1 First terms}

$$
\begin{array}{cc}
& asec(x)\approx  \\
& \quad{}\quad{}\left(i ln(2) + \frac{i}{4} x^{2} + 
\frac{3 i}{32} x^{4} + \frac{5 i}{96} x^{6} + 
\frac{35 i}{1024} x^{8} + i ln(x)\ldots\right).
\end{array}
$$

\subsection{ASC.2.3 Asymptotic expansion at $1$}
\subsubsection{ASC.2.3.1 First terms}

$$
\begin{array}{cc}
& asec(x)\approx \sqrt{x - 1} 
\left(\sqrt{2} - \frac{5 \sqrt{2} (x - 1)}{12} + 
\frac{43 \sqrt{2} (x - 1)^{2}}{160} - \right. \\
& \quad{}\quad{}\frac{177 \sqrt{2} (x - 1)^{3}}{896} + 
\frac{2867 \sqrt{2} (x - 1)^{4}}{18432} - 
\frac{11531 \sqrt{2} (x - 1)^{5}}{90112} +  \\
& \quad{}\quad{}\frac{92479 \sqrt{2} (x - 1)^{6}}{851968} - 
\frac{74069 \sqrt{2} (x - 1)^{7}}{786432} +  \\
& \quad{}\quad{}\frac{11857475 \sqrt{2} (x - 1)^{8}}{142606336} - 
\frac{47442055 \sqrt{2} (x - 1)^{9}}{637534208} +  \\
& \quad{}\quad{}\frac{126527543 \sqrt{2} (x - 1)^{10}}{1879048192} - 
\frac{1518418695 \sqrt{2} (x - 1)^{11}}{24696061952} +  \\
& \quad{}\quad{}\frac{24295375159 \sqrt{2} (x - 1)^{12}}{429496729600} - 
\frac{97182800711 \sqrt{2} (x - 1)^{13}}{1855425871872} +  \\
& \left.\quad{}\quad{}\frac{777467420263 
\sqrt{2} (x - 1)^{14}}{15942918602752} - 
\frac{3109879375897 \sqrt{2} (x - 1)^{15}}{68169720922112}\ldots\right).
\end{array}
$$

\subsubsection{ASC.2.3.2 General form}

$$asec(x)\approx \sqrt{x - 1} \sum_{n = 0}^{\infty} u (n) (x - 1)^{n}$$

The coefficients $u(n)$ satisfy the recurrence
$$
\begin{array}{cc}
& 2 u(n) \left(\frac{1}{2} + n\right) n + 
u(n - 1) \left(-\frac{1}{2} + n\right) \left(-\frac{1}{2} + 3 n\right) + 
u(n - 2) \left(-\frac{3}{2} + n\right) 
\left(-\frac{1}{2} + n\right) \\
& \quad{}\quad{}=0.
\end{array}
$$

Initial conditions of ASC.2.3.2.2 are given by
$$
\begin{array}{cc}
u(0)& =\sqrt{2}, \\
u(1)& =\frac{-5\sqrt{2}}{12}.
\end{array}
$$

As implemented within OpenAxiom the {\tt asec} function is
$$sec^{-1}(z) == cos^{-1}\left(\frac{1}{z}\right)$$
<<*>>=
)spool asec.output
)set message test off
)set message auto off
)set break resume
digits(22)
)clear all
 
--S 1 of 10
asec(-2.0)
--R
--R   (1)  2.0943951023 9319549230 8
--R                                                                  Type: Float
--E 1

--S 2 of 10
asec(-1.5)
--R
--R   (2)  2.3005239830 2186298268 6
--R                                                                  Type: Float
--E 2

--S 3 of 10
asec(-1.0)
--R
--R   (3)  3.1415926535 8979323846 3
--R                                                                  Type: Float
--E 3

--S 4 of 10
asec(-0.5)
--R 
--R   >> Error detected within library code:
--R   acos: argument > 1 in magnitude
--R
--R   Continuing to read the file...
--R
--E 4

--S 5 of 10
asec(-0.0)
--R 
--R   >> Error detected within library code:
--R   asec: no reciprocal
--R
--R   Continuing to read the file...
--R
--E 5

--S 6 of 10
asec(0.0)
--R 
--R   >> Error detected within library code:
--R   asec: no reciprocal
--R
--R   Continuing to read the file...
--R
--E 6

--S 7 of 10
asec(0.5)
--R 
--R   >> Error detected within library code:
--R   acos: argument > 1 in magnitude
--R
--R   Continuing to read the file...
--R
--E 7

--S 8 of 10
asec(1.0)
--R
--R   (4)  0.0
--R                                                                  Type: Float
--E 8

--S 9 of 10
asec(1.5)
--R
--R   (5)  0.8410686705 6793025577 652
--R                                                                  Type: Float
--E 9

--S 10 of 10
asec(2.0)
--R
--R   (6)  1.0471975511 9659774615 42
--R                                                                  Type: Float
--E 10
)spool 
)lisp (bye)
 
@
\eject
\begin{thebibliography}{99}
\bibitem{1} The Encyclopedia of Special Functions
http://algo.inria.fr/esf/function/ASC/ASC.html
\end{thebibliography}
\end{document}