aboutsummaryrefslogtreecommitdiff
path: root/src/include/vm.H
blob: 7dc2d7d6b7858df9afa6113cd656c79f419ba2db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
// Copyright (C) 2011-2013, Gabriel Dos Reis.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     - Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//
//     - Redistributions in binary form must reproduce the above copyright
//       notice, this list of conditions and the following disclaimer in
//       the documentation and/or other materials provided with the
//       distribution.
//
//     - Neither the name of OpenAxiom nor the names of its contributors
//       may be used to endorse or promote products derived from this
//       software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// --% Author: Gabriel Dos Reis
// --% Description:
// --%   Interface and implementation of basic services of the 
// --%   OpenAxiom Virtual Machine.

#ifndef OPENAXIOM_VM_included
#define OPENAXIOM_VM_included

#include <open-axiom/storage>
#if HAVE_STDINT_H
#  include <stdint.h>
#endif 
#include <open-axiom/string-pool>
#include <utility>
#include <map>
#include <set>

#define internal_type struct alignas(16)
#define internal_data alignas(16)

namespace OpenAxiom {
   namespace VM {
      // --%
      // --% Value representation
      // --%
      // A far reaching design decision is to provide a uniform
      // representation for values.  That is all values, irrespective
      // of type have fit in a fixed format, i.e. a scalar register.
      // This means that values that are more complicated than a scalar,
      // that is the vast majority and most interesting values, have to
      // be stored in allocated objects and addresses of their container
      // objects used in place of the actual values.  This is folklore
      // in the communities of garbage collected languages.
      // 
      // An unfortunate but widely held belief is that AXIOM-based
      // systems (and computer algebra systems in general) are
      // Lisp-based systems.  Nothing could be further from the truth
      // for OpenAxiom.  The type system is believed to support
      // erasure semantics, at least for values.
      //
      // However the current implementation, being Lisp-based,
      // unwittingly makes use of some Lisp features that are not
      // strictly necessary.  It would take a certain amount of effort
      // to get rid of them.  Consequently, we must cope -- at least
      // for now -- with the notion of uniform value representation and
      // use runtime predicates to descriminate between values.
      // On the other hand, we do not want to carry an unduly expensive
      // abstraction penalty for perfectly well behaved and well
      // disciplined programs.  So, here are a few constraints:
      //   1. Small integers should represent themselves -- not allocated.
      //      Furthermore, the maximum range should be sought where possible.
      //   2. Since we have to deal with characters, they should be
      //      directly represented -- not allocated.
      //   3. List values and list manipulation should be efficient.
      //      Ideally, a pair should occupy no more than what it
      //      takes to store two values in a type-erasure semantics.
      //   4. Idealy, pointers to foreign objects (at least) should be
      //      left unmolested.
      //   5. Ideally, we want efficient access to string literals
      // 
      // * Assumptions:
      //     (a) the host machine has sizeof(Value) quo 4 = 0.
      //     (b) allocated objects can be aligned on sizeof(Value) boundary.
      //     (c) the host machine has 2's complement arithmetic.
      //
      // If:
      //   -- we use a dedicated allocation pool for cons cells
      //   -- we allocate the first cell in each cons-storage arena
      //      on a 8-byte boundary
      //   -- we use exactly 2 * sizeof(Value) to store a cons cell
      //      therefore realizing constraint (3)
      // then:
      //   every pointer to a cons cell will have its last 3 bits cleared.
      //
      // Therefore, we can use the last 3 bits to tag a cons value, instead
      // of storing the tag inside the cons cell.  We can't leave those
      // bits cleared for we would not be able to easily and cheaply
      // distinguish a pointer to a cons cell from a pointer to other
      // objects, in particular foreign objects.
      //
      // To meet constraint (1), we must logically use at least one bit
      // to distinguish a small integer from a pointer to a cons cell.
      // The good news is that we need no more than that if pointers
      // to foreign pointers do not have the last bit set.  Which is
      // the case with assumption (a).  Furthermore, if we align all
      // other internal data on 16 byte boundary, then we have 4 spare bits
      // for use to categorize values.
      // Therefore we arrive at the first design:
      //    I. the value representation of a small integer always has the
      //       the least significant bit set.  All other bits are
      //       significant.  In other words, the last four bits of a small
      //       integer are 0bxxx1
      // 
      // As a consequence, the last bit of all other values must be cleared.
      //
      // Next,
      //   II. All foreign pointers that are aligned on 8-boundary are
      //       directly represented.  Any foreign pointer not meeting
      //       this condition is allocated in internal obejcts.  As a
      //       consequence, the last four bits of all foreign addresses 
      //       directly represented follow the pattern 0bx000.
      // 
      //  III. Cons cells are represented by their addresses with the
      //       last 4 bits matching the pattern 0bx010.
      //
      //   IV. All internal objects are allocated on 16-byte boundary.
      //       Their last 4 bits are set to the pattern 0b0110.
      //
      //    V. String literals are represented by their addressed with
      //       the last four bits following the pattern 0bx100..
      //
      // Finally:
      //   IV. The representation of a character shall have the last four
      //       bits set to 0b1110.
      //
      // Note: These choices do not fully satisfy constraint 4.  This is 
      //     because we restrict foreign pointers to address aligned
      //     to 8-byte boundaries.


      // -----------
      // -- Value --
      // -----------
      // All VM values fit in a universal value datatype.
      using Value = uintptr_t;

      // The distinguished `nil' value.
      constexpr Value nil { };

      // -------------
      // -- Fixnum ---
      // -------------
      // VM integers are divided into classes: small numbers,
      // and large numbers.  A small number fits entirely in a register.
      // A large number is allocated and represented by its address.
      using Fixnum = intptr_t;

      constexpr Value fix_tag = 0x1;

      constexpr bool is_fixnum(Value v) {
         return (v & 0x1) == fix_tag;
      }

      constexpr Fixnum to_fixnum(Value v) {
         return Fixnum(v >> 1);
      }

      constexpr Value from_fixnum(Fixnum i) {
         return (Fixnum(i) << 1 ) | fix_tag;
      }

      constexpr Fixnum fixnum_maximum = to_fixnum(~Value{ });
      constexpr Fixnum fixnum_minimum = -fixnum_maximum - 1;

      // ------------
      // -- String --
      // ------------
      using String = BasicString;

      constexpr Value str_tag = 0x4;

      constexpr bool is_string(Value v) {
         return (v & 0x7) == str_tag;
      }

      inline BasicString to_string(Value v) {
         return reinterpret_cast<BasicString>(v & ~Value(0x7));
      }

      inline Value from_string(BasicString s) {
         return Value(s) | str_tag;
      }

      inline BasicString to_string_if_can(Value v) {
         return is_string(v) ? to_string(v) : nullptr;
      }

      // -------------
      // -- Pointer --
      // -------------
      // Allocated objects are represented by their addresses.
      using Memory::Pointer;

      constexpr Value ptr_tag = 0x0;

      constexpr bool is_pointer(Value v) {
         return (v & 0x7) == ptr_tag;
      }

      inline Pointer to_pointer(Value v) {
         return Pointer(v);
      }

      inline Value from_pointer(Pointer p) {
         return Value(p);
      }

      // ----------
      // -- Pair --
      // ----------
      struct ConsCell {
         Value head;
         Value tail;
      };

      using Pair = ConsCell*;

      constexpr Value pair_tag = 0x2;

      inline bool is_pair(Value v) {
         return (v & 0x7) == pair_tag;
      }

      inline Pair to_pair(Value v) {
         return Pair(v & ~0x7);
      }

      inline Value from_pair(Pair p) {
         return Value(p) | pair_tag;
      }

      // If `v' designates a pair, return a pointer to its
      // concrete representation.
      inline Pair to_pair_if_can(Value v) {
         return is_pair(v) ? to_pair(v) : nullptr;
      }

      Fixnum count_nodes(Pair);
      inline Fixnum count_nodes(Value v) {
         if (auto p = to_pair_if_can(v))
            return count_nodes(p);
         return 0;
      }

      // ---------------
      // -- Character --
      // ---------------
      // This datatype is prepared for Uncode characters even if
      // we do not handle UCN characters at the moment.
      using Character = Value;

      constexpr Value char_tag = 0xE;

      constexpr bool is_character(Value v) {
         return (v & 0xF) == char_tag;
      }

      constexpr Character to_character(Value v) {
         return Character(v >> 4);
      }

      constexpr Value from_character(Character c) {
         return (Value(c) << 4) | char_tag;
      }

      // -- Object --
      // An object is a typed value.
      struct Type;
      struct Object {
         Value value;
         const Type* type;
      };

      // -------------
      // -- Dynamic --
      // -------------
      // Any internal value is of a class derived from this.
      internal_type Dynamic {
         virtual ~Dynamic();
      };

      constexpr Value dyn_tag = 0x6;

      constexpr bool is_dynamic(Value v) {
         return (v & 0xF) == dyn_tag;
      }

      inline Dynamic* to_dynamic(Value v) {
         return reinterpret_cast<Dynamic*>(v & ~0xF);
      }

      inline Dynamic* to_dynamic_if_can(Value v) {
         return is_dynamic(v)
            ? reinterpret_cast<Dynamic*>(v & ~0xF)
            : nullptr;
      }

      inline Value from_dynamic(const Dynamic* o) {
         return Value(o) | dyn_tag;
      }

      struct Scope;
      
      // ------------
      // -- Symbol --
      // ------------
      struct Symbol : Dynamic, std::pair<String, Scope*> {
         Symbol(String, Scope*);
         String name() const { return first; }
         Scope* scope() const { return second; }
      };

      inline Symbol* to_symbol_if_can(Value v) {
         return dynamic_cast<Symbol*>(to_dynamic_if_can(v));
      }

      inline bool is_symbol(Value v) {
         return to_symbol_if_can(v) != nullptr;
      }

      inline Value from_symbol(const Symbol* s) {
         return from_dynamic(s);
      }

      // -----------
      // -- Scope --
      // -----------
      struct Scope : Dynamic, private std::map<Symbol*, Value> {
         explicit Scope(BasicString n) : id(n) { }
         BasicString name() const { return id; }
         Value* lookup(Symbol*) const;
         Value* define(Symbol*, Value);
      private:
         const BasicString id;
      };

      // --------------
      // -- Function --
      // --------------
      struct FunctionBase : Dynamic {
         const Symbol name;
         Value type;
         FunctionBase(Symbol n, Value t = nil)
               : name(n), type(t) { }
      };

      // ------------------------
      // -- Builtin Operations --
      // ------------------------
      // Types for native implementation of builtin operators.
      struct BasicContext;
      using NullaryCode = Value (*)(BasicContext*);
      using UnaryCode = Value (*)(BasicContext*, Value);
      using BinaryCode = Value (*)(BasicContext*, Value, Value);
      using TernaryCode = Value (*)(BasicContext*, Value, Value, Value);

      template<typename Code>
      struct BuiltinFunction : FunctionBase {
         Code code;
         BuiltinFunction(Symbol n, Code c) : FunctionBase(n), code(c) { }
      };

      using NullaryOperator = BuiltinFunction<NullaryCode>;
      using UnaryOperator = BuiltinFunction<UnaryCode>;
      using BinaryOperator = BuiltinFunction<BinaryCode>;
      using TernaryOperator = BuiltinFunction<TernaryCode>;

      // ------------------
      // -- BasicContext --
      // ------------------
      // Provides basic evaluation services.
      struct BasicContext : StringPool {
         BasicContext();
         ~BasicContext();

         Pair make_pair(Value, Value);
         const Symbol* make_symbol(String, Scope*);
         const NullaryOperator* make_operator(Symbol, NullaryCode);
         const UnaryOperator* make_operator(Symbol, UnaryCode);
         const BinaryOperator* make_operator(Symbol, BinaryCode);
         const TernaryOperator* make_operator(Symbol, TernaryCode);

      protected:
         std::set<Symbol> syms;
         Memory::Factory<ConsCell> conses;
         Memory::Factory<NullaryOperator> nullaries;
         Memory::Factory<UnaryOperator> unaries;
         Memory::Factory<BinaryOperator> binaries;
         Memory::Factory<TernaryOperator> ternaries;
      };
   };
}

#endif  // OPENAXIOM_VM_INCLUDED