1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
|
% Copyright The Numerical Algorithms Group Limited 1992-94. All rights reserved.
% !! DO NOT MODIFY THIS FILE BY HAND !! Created by ht.awk.
\texht{\setcounter{chapter}{-1}}{} %
%
\newcommand{\ugWhatsNewTwoTwoTitle}{What's New in \Language{} Version 2.2}
\newcommand{\ugWhatsNewTwoTwoNumber}{0.}
%
% =====================================================================
\begin{page}{ugWhatsNewTwoTwoPage}{0. What's New in \Language{} Version 2.2}
% =====================================================================
\beginscroll
\beginmenu
\menudownlink{{0.1. \axiomxl{} compiler - Enhancements and Additions}}{ugTwoTwoAldorPage}
\menudownlink{{0.2. New polynomial domains and algorithms}}{ugTwoTwoPolynomialsPage}
\menudownlink{{0.3. Enhancements to HyperDoc and Graphics}}{ugTwoTwoHyperdocPage}
\menudownlink{{0.4. Enhancements to NAGLink}}{ugTwoTwoNAGLinkPage}
\menudownlink{{0.5. Enhancements to the Lisp system}}{ugTwoTwoCCLPage}
\endmenu
\endscroll
\autobuttons
\end{page}
%
%
\newcommand{\ugTwoTwoAldorTitle}{\axiomxl{} compiler - Enhancements and Additions}
\newcommand{\ugTwoTwoAldorNumber}{0.1.}
%
% =====================================================================
\begin{page}{ugTwoTwoAldorPage}{0.1. \axiomxl{} compiler - Enhancements and Additions}
% =====================================================================
\beginscroll
Numerous bug fixes and improvements have been implemented in version 1.1.12
of \axiomxl{} which is included in this release. You may also notice the name
{\it Aldor} being used when referring to \axiomxl{}.
The format of {\bf .ao} files has changed somewhat so you need
to recompile your {\bf .as} source files.
An updated User's Guide is included for on-line use. We provide
TeX {\bf .dvi} format (including hyper-references), Acrobat {\bf .pdf}
format, PostScript {\bf .ps} format and plain ASCII {bf .txt}.
An up-to-date {\bf .dvi}
viewer should be able to allow you to follow the cross-references.
These files can be found in
{\bf \env{AXIOM}/compiler/doc/axlugII.*}.
An exception mechanism has been implemented. You can now throw and
catch exceptions which are fully-fledged domains that can carry information.
See Chapter 31 in the on-line guide for details.
Support for linking with Fortran-77 code has been added. You can call
Fortran-77 code from {\it Aldor} and vice-versa. See Chapter 32
in the on-line guide for details.
The \spad{ref} keyword has been added. You must use \spad{_ref} to
enable use as an identifier.
A generic configurable C compiler and linker driver i{\bf unicl} has been
implemented. You can now select C compiler and linker options with
greater ease and you can give names to specific configurations.
See Chapter 28 in the on-line guide for details.
There is now support for accessing IEEE floating-point rounding modes
and exception flags. You must ensure however that your C compiler
and linker will respect the IEEE standard by enabling the appropriate
options through {\bf unicl}.
See BasicIeeeControlPackage (26.7) in the on-line guide.
Special runtime libraries ({\bf libfoam-gmp.a}) have been prepared to enable
a drop-in replacement of Aldor's big-integer arithmetic with the GNU gmp
big-integer library. The executable script {\bf axiomxl.gmp} (in the same place
as {\bf axiomxl}) expects the {\bf GmpDir} environment variable to be set
to the directory where a compiled GNU gmp library resides ({\bf libgmp.a}) and
arranges for the appropriate libraries to be linked in when generating
a stand-alone executable.
The language-defined type TrailingArray has been introduced. See
TrailingArray (13.7) in the on-line guide.
The supplied library {\bf libaxllib.al}, supporting stand-alone programs,
has been updated. Automatically
generated documentation can be found in Chapters 25 and 26 of the on-line
guide.
\endscroll
\autobuttons
\end{page}
%
%
\newcommand{\ugTwoTwoPolynomialsTitle}{New polynomial domains and algorithms}
\newcommand{\ugTwoTwoPolynomialsNumber}{0.2.}
%
% =====================================================================
\begin{page}{ugTwoTwoPolynomialsPage}{0.2. New polynomial domains and algorithms}
% =====================================================================
\beginscroll
Univariate polynomial factorisation over the integers has been
enhanced by updates to the \spadtype{GaloisGroupFactorizer} type
and friends from Frederic Lehobey (Frederic.Lehobey@lifl.fr, University of
Lille I, France).
The package constructor \spadtype{PseudoRemainderSequence}
provides efficient algorithms by Lionel Ducos
(Lionel.Ducos@mathlabo.univ-poitiers.fr, University of Poitiers, France)
for computing sub-resultants.
This leads to a speed up in many places in \Language{} where
sub-resultants are computed (polynomial system solving,
algebraic factorization, integration).
Based on this package, the domain constructor
\spadtype{NewSparseUnivariatePolynomial}
extends the constructor \spadtype{SparseUnivariatePolynomial}.
In a similar way, the \spadtype{NewSparseMultivariatePolynomial} extends
the constructor \spadtype{SparseUnivariatePolynomial};
it also provides some additional operations related
to polynomial system solving by means of triangular sets.
Several domain constructors implement
regular triangular sets (or regular chains).
Among them \spadtype{RegularTriangularSet}
and \spadtype{SquareFreeRegularTriangularSet}.
They also implement an algorithm by Marc Moreno Maza (marc@nag.co.uk, NAG)
for computing triangular decompositions of polynomial systems.
This method is refined in the package \spadtype{LazardSetSolvingPackage}
in order to produce decompositions by means of Lazard triangular sets.
For the case of polynomial systems with finitely many solutions,
these decompositions can also be computed by
the package \spadtype{LexTriangularPackage}.
The domain constructor \spadtype{RealClosure} by Renaud Rioboo
(Renaud.Rioboo@lip6.fr, University of Paris 6, France)
provides the real closure of an ordered field.
The implementation is based on interval arithmetic.
Moreover, the design of this constructor and its related
packages allows an easy use of other codings for real algebraic numbers.
Based on triangular decompositions and the \spadtype{RealClosure} constructor,
the package \spadtype{ZeroDimensionalSolvePackage}
provides operations for computing symbolically the real or complex roots
of polynomial systems with finitely many solutions.
Polynomial arithmetic with non-commutative variables
has been improved too by a contribution of Michel Petitot
(Michel.Petitot@lifl.fr, University of Lille I, France).
The domain constructors \spadtype{XRecursivePolynomial}
and \spadtype{XDistributedPolynomial} provide
recursive and distributed representations for these polynomials.
They are the non-commutative equivalents for
the \spadtype{SparseMultivariatePolynomial}
and \spadtype{DistributedMultivariatePolynomial} constructors.
The constructor \spadtype{LiePolynomial} implement Lie
polynomials in the Lyndon basis.
The constructor \spadtype{XPBWPolynomial} manage polynomials
with non-commutative variables in
the \texht{Poincar\'e}{Poincare\space{-1}'}-Birkhoff-Witt basis from the Lyndon basis.
This allows to compute in the Lie Group associated with a
free nilpotent Lie algebra by using the \spadtype{LieExponentials}
domain constructor.
\endscroll
\autobuttons
\end{page}
%
%
\newcommand{\ugTwoTwoHyperdocTitle}{Enhancements to HyperDoc and Graphics}
\newcommand{\ugTwoTwoHyperdocNumber}{0.3.}
%
% =====================================================================
\begin{page}{ugTwoTwoHyperdocPage}{0.3. Enhancements to HyperDoc and Graphics}
% =====================================================================
\beginscroll
From this version of AXIOM onwards, the pixmap format used to save graphics
images in color and to display them in HyperDoc has been changed to the
industry-standard XPM format. See {\tt ftp://koala.inria.fr/pub/xpm}.
\endscroll
\autobuttons
\end{page}
%
%
\newcommand{\ugTwoTwoNAGLinkTitle}{Enhancements to NAGLink}
\newcommand{\ugTwoTwoNAGLinkNumber}{0.4.}
%
% =====================================================================
\begin{page}{ugTwoTwoNAGLinkPage}{0.4. Enhancements to NAGLink}
% =====================================================================
\beginscroll
This version of AXIOM incorporates the AXIOM/NAG Numerical Analyst (ANNA)
software developed in the University of Bath. ANNA is an expert system which
uses AXIOM algebra functionality in choosing the most appropriate NAG Fortran Library
routine for a particular problem. Documentation is provided on-line on the main HyperDoc page.
\endscroll
\autobuttons
\end{page}
%
%
\newcommand{\ugTwoTwoCCLTitle}{Enhancements to the Lisp system}
\newcommand{\ugTwoTwoCCLNumber}{0.5.}
%
% =====================================================================
\begin{page}{ugTwoTwoCCLPage}{0.5. Enhancements to the Lisp system}
% =====================================================================
\beginscroll
In this version of AXIOM, certain Library operations have been accelerated by converting
their Lisp implementations into kernel operations implemented directly in C. Here is a list
of the accelerated operations. The given names encode the abbreviated type the operation
comes from, the name of the operation and, in the case of exported functions, an encoded
signature and numerical index.
\begin{verbatim}
|A1AGG-;=;2AB;28|
|A1AGG-;copy;2A;19|
|A1AGG-;sort!;M2A;2|
|ABELGRP-;*;Nni2S;3|
|ABELGRP-;-;3S;1|
|ABELMON-;*;Pi2S;2|
|ABELMON-;zero?;SB;1|
|AGG-;empty?;SB;3|
|AGG-;size?;SNniB;6|
|ALIST;keys;$L;6|
|ALIST;search;Key$U;15|
|ARR2CAT-;copy;2S;10|
|BOP;<;2$B;29|
|BOP;=;2$B;27|
|BOP;has?;$SB;9|
|BOP;is?;$SB;1|
|BOP;name;$S;2|
|BOP;properties;$Al;3|
|BOP;property;$SU;7|
|BOP;weight;$Nni;28|
|COMPCAT-;*;R2S;18|
|COMPCAT-;-;2S;17|
|COMPCAT-;=;2SB;15|
|COMPCAT-;exquo;SRU;46|
|COMPCAT-;recip;SU;48|
|COMPCAT-;rem;3S;53|
|COMPCAT-;unitNormal;SR;49|
|COMPLEX;*;3$;10|
|COMPLEX;+;3$;9|
|COMPLEX;coerce;R$;5|
|COMPLEX;exquo;2$U;11|
|COMPLEX;one?;$B;4|
|COMPLEX;zero?;$B;3|
|DIRPROD;<;2$B;18|
|DIRPROD;subtractIfCan;2$U;14|
|ELAGG-;removeDuplicates;2A;12|
|ELTAGG-;qelt;SDomIm;1|
|ELTAGG-;qsetelt!;SDom2Im;2|
|EUCDOM-;gcd;3S;5|
|EUCDOM-;unitNormalizeIdealElt|
|EXPR;*;3$;11|
|EXPR;+;3$;12|
|EXPR;-;2$;8|
|EXPR;/;3$;14|
|EXPR;=;2$B;21|
|EXPR;algkernels!0|
|EXPR;algkernels|
|EXPR;coerce;I$;10|
|EXPR;coerce;Smp$;24|
|EXPR;commonk0|
|EXPR;commonk|
|EXPR;denom;$Smp;23|
|EXPR;numer;$Smp;22|
|EXPR;reduc|
|EXPR;zero?;$B;7|
|FACUTIL;lowerPolynomial;SupSup;1|
|FAMR-;coefficients;SL;4|
|FAMR-;ground;SR;2|
|FFP;*;3$;21|
|FFP;+;3$;22|
|FFP;-;3$;23|
|FFP;=;2$B;24|
|FIELD-;/;3S;11|
|FIELD-;inv;2S;4|
|FLAGG-;sort!;2A;8|
|FLAGG-;sort;M2A;6|
|FLASORT;QuickSort|
|FLASORT;partition|
|FLASORT;quickSort;M2V;1|
|FM;*;R2$;1|
|FRAC;*;3$;18|
|FRAC;*;I2$;19|
|FRAC;+;3$;16|
|FRAC;=;2$B;22|
|FRAC;cancelGcd|
|FRAC;coerce;S$;1|
|FRAC;normalize|
|FRAC;one?;$B;23|
|FRAC;recip;$U;13|
|FRAC;zero?;$B;2|
|FSAGG-;brace;LA;3|
|GDMP;univariate;$OvlSup;21|
|HDP;<;2$B;1|
|IARRAY1;#;$Nni;1|
|IARRAY1;elt;$IS;16|
|IARRAY1;fill!;$S$;2|
|IARRAY1;map;M3$;8|
|IARRAY1;maxIndex;$I;13|
|IARRAY1;minIndex;$I;3|
|IARRAY1;new;NniS$;5|
|IARRAY1;qelt;$IS;14|
|IARRAY1;qsetelt!;$I2S;15|
|IARRAY1;setelt;$I2S;17|
|IDPAM;+;3$;4|
|IDPAM;map;M2$;7|
|IDPAM;monomial;AS$;6|
|IDPO;=;2$B;1|
|IFARRAY;#;$Nni;4|
|IFARRAY;concat!;$S$;21|
|IFARRAY;elt;$IS;17|
|IFARRAY;empty;$;3|
|IFARRAY;growAndFill|
|IFARRAY;growWith|
|IFARRAY;maxIndex;$I;6|
|IFARRAY;minIndex;$I;7|
|IFARRAY;new;NniS$;8|
|IFARRAY;removeDuplicates!;2$;30|
|IFARRAY;setelt;$I2S;18|
|IIARRAY2;elt;$2IR;11|
|IIARRAY2;empty?;$B;1|
|IIARRAY2;maxColIndex;$I;7|
|IIARRAY2;maxRowIndex;$I;6|
|IIARRAY2;minColIndex;$I;5|
|IIARRAY2;minRowIndex;$I;4|
|IIARRAY2;ncols;$Nni;9|
|IIARRAY2;nrows;$Nni;8|
|IIARRAY2;qelt;$2IR;10|
|IIARRAY2;qsetelt!;$2I2R;12|
|ILIST;concat!;3$;25|
|ILIST;copy;2$;20|
|ILIST;empty;$;6|
|ILIST;first;$S;4|
|ILIST;member?;S$B;24|
|ILIST;mergeSort|
|ILIST;minIndex;$I;18|
|ILIST;removeDuplicates!;2$;26|
|ILIST;rest;$Nni$;19|
|ILIST;sort!;M2$;27|
|ILIST;split!;$I$;29|
|IMATLIN;rowEchelon;2M;3|
|INS-;symmetricRemainder;3S;27|
|INT;exquo;2$U;44|
|INT;one?;$B;2|
|INT;positiveRemainder;3$;23|
|INT;unitNormal;$R;47|
|INTDOM-;unitCanonical;2S;2|
|ISTRING;<;2$B;6|
|KDAGG-;key?;KeySB;1|
|KERNEL;<;2$B;14|
|KERNEL;=;2$B;13|
|KERNEL;B2Z|
|KERNEL;argument;$L;6|
|KERNEL;operator;$Bo;5|
|KERNEL;position;$Nni;7|
|KERNEL;triage|
|LO;-;2$;3|
|LO;=;2$B;4|
|LSAGG-;<;2AB;25|
|LSAGG-;reduce;MA2S;16|
|LSAGG-;select!;M2A;5|
|MATCAT-;*;3S;29|
|MATCAT-;*;S2Col;32|
|MDDFACT;reduction!0|
|MDDFACT;reduction|
|MODRING;reduce;RMod$;6|
|MODRING;zero?;$B;10|
|MONOID-;one?;SB;2|
|NNI;subtractIfCan;2$U;3|
|NSMP;mvar;$VarSet;5|
|OVAR;<;2$B;10|
|PERMGRP;inv|
|PERMGRP;orbitWithSvc|
|PERMGRP;testIdentity|
|PERMGRP;times|
|PGCD;better|
|PGCD;gcd;3P;15|
|PGCD;gcdTermList|
|POLYCATQ;variables;FL;5|
|PR;*;3$;20|
|PR;addm!|
|PR;coerce;R$;12|
|PR;degree;$E;4|
|PR;leadingCoefficient;$R;6|
|PR;reductum;2$;8|
|PRIMARR;#;$Nni;1|
|PRIMARR;fill!;$S$;9|
|PRIMARR;new;NniS$;4|
|PRTITION;<;2$B;5|
|REPSQ;expt;SPiS;1|
|RING-;coerce;IS;1|
|SAE;*;3$;15|
|SAE;+;3$;13|
|SAE;-;2$;14|
|SAE;=;2$B;12|
|SAE;reduce;UP$;11|
|SCACHE;enterInCache;SMS;5|
|SET;construct;L$;19|
|SET;empty;$;4|
|SGROUP-;**;SPiS;1|
|SINT;zero?;$B;33|
|SMP;*;3$;29|
|SMP;*;R2$;25|
|SMP;+;3$;26|
|SMP;-;2$;23|
|SMP;=;2$B;28|
|SMP;coerce;R$;20|
|SMP;coerce;VarSet$;7|
|SMP;exquo;2$U;35|
|SMP;exquo;2$U;36|
|SMP;gcd;3$;41|
|SMP;gcd;3$;44|
|SMP;gcd;3$;48|
|SMP;gcd;3$;51|
|SMP;ground?;$B;15|
|SMP;leadingCoefficient;$R;73|
|SMP;mainVariable;$U;59|
|SMP;one?;$B;4|
|SMP;retract;$R;55|
|SMP;unitNormal;$R;31|
|SMP;variables;$L;58|
|SMP;zero?;$B;3|
|STAGG-;c2|
|STAGG-;concat;3A;7|
|STAGG-;elt;AIS;5|
|STAGG-;first;ANniA;3|
|STREAM2;map;MSS;2|
|STREAM2;mapp!0|
|STREAM2;mapp|
|STREAM;empty;$;33|
|STREAM;lazyEval|
|STREAM;setfrst!|
|STREAM;setrst!|
|STTAYLOR;+;3S;2|
|SUP;exquo;2$U;19|
|SUP;exquo;2$U;20|
|SUP;fmecg;$NniR2$;21|
|SUP;ground?;$B;3|
|SUP;monicDivide;2$R;28|
|URAGG-;tail;2A;16|
|ZMOD;*;3$;30|
|ZMOD;+;3$;32|
|ZMOD;-;2$;36|
|ZMOD;-;3$;33|
\end{verbatim}
\endscroll
\autobuttons
\end{page}
%
|