aboutsummaryrefslogtreecommitdiff
path: root/src/hyper/pages/coverex.ht
blob: d4988c1e9e8ddfdc3cedb67051d619f53cb9cd2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
% DO NOT EDIT! Created by ex2ht.

\begin{page}{ExampleCoverPage}{Examples Of AXIOM Commands}
\beginscroll\table{
{\downlink{Differentiation}{Menuexdiff}}
{\downlink{Integration}{Menuexint}}
{\downlink{Laplace Transforms}{Menuexlap}}
{\downlink{Limits}{Menuexlimit}}
{\downlink{Matrices}{Menuexmatrix}}
{\downlink{2-D Graphics}{Menuexplot2d}}
{\downlink{3-D Graphics}{Menuexplot3d}}
{\downlink{Series}{Menuexseries}}
{\downlink{Summations}{Menuexsum}}
}\endscroll\end{page}

\begin{page}{Menuexdiff}{Differentiation}
\beginscroll\beginmenu
\menudownlink{Computing Derivatives}{ExDiffBasic}
\spadpaste{differentiate(sin(x) * exp(x**2),x)}
\menudownlink{Derivatives of Functions of Several Variables}{ExDiffSeveralVariables}
\spadpaste{differentiate(sin(x) * tan(y)/(x**2 + y**2),x)}
\spadpaste{differentiate(sin(x) * tan(y)/(x**2 + y**2),y)}
\menudownlink{Derivatives of Higher Order}{ExDiffHigherOrder}
\spadpaste{differentiate(exp(x**2),x,4)}
\menudownlink{Multiple Derivatives I}{ExDiffMultipleI}
\spadpaste{differentiate(sin(x)/(x**2 + y**2),[x,y])}
\spadpaste{differentiate(sin(x)/(x**2 + y**2),[x,y,y])}
\menudownlink{Multiple Derivatives II}{ExDiffMultipleII}
\spadpaste{differentiate(cos(z)/(x**2 + y**3),[x,y,z],[1,2,3])}
\menudownlink{Derivatives of Functions Involving Formal Integrals}{ExDiffFormalIntegral}
\spadpaste{f := integrate(sqrt(1 + t**3),t) \bound{f}}
\spadpaste{differentiate(f,t) \free{f}}
\spadpaste{differentiate(f * t**2,t) \free{f}}
\endmenu\endscroll\end{page}

\begin{page}{Menuexint}{Integration}
\beginscroll\beginmenu
\menudownlink{Integral of a Rational Function}{ExIntRationalFunction}
\spadpaste{integrate((x**2+2*x+1)/((x+1)**6+1),x)}
\spadpaste{integrate(1/(x**3+x+1),x) \bound{i}}
\spadpaste{definingPolynomial(tower(\%).2::EXPR INT) \free{i}}
\menudownlink{Integral of a Rational Function with a Real Parameter}{ExIntRationalWithRealParameter}
\spadpaste{integrate(1/(x**2 + a),x)}
\menudownlink{Integral of a Rational Function with a Complex Parameter}{ExIntRationalWithComplexParameter}
\spadpaste{complexIntegrate(1/(x**2 + a),x)}
\menudownlink{Two Similar Integrands Producing Very Different Results}{ExIntTwoSimilarIntegrands}
\spadpaste{integrate(x**3 / (a+b*x)**(1/3),x)}
\spadpaste{integrate(1 / (x**3 * (a+b*x)**(1/3)),x)}
\menudownlink{An Integral Which Does Not Exist}{ExIntNoSolution}
\spadpaste{integrate(log(1 + sqrt(a*x + b)) / x,x)}
\menudownlink{A Trigonometric Function of a Quadratic}{ExIntTrig}
\spadpaste{integrate((sinh(1+sqrt(x+b))+2*sqrt(x+b))/(sqrt(x+b)*(x+cosh(1+sqrt(x+b)))),x)}
\menudownlink{Integrating a Function with a Hidden Algebraic Relation}{ExIntAlgebraicRelation}
\spadpaste{integrate(tan(atan(x)/3),x)}
\menudownlink{Details for integrating a function wiht a Hidden Algebraic Relation}{ExIntAlgebraicRelationExplain}
\menudownlink{An Integral Involving a Root of a Transcendental Function}{ExIntRadicalOfTranscendental}
\spadpaste{integrate((x + 1) / (x * (x + log x)**(3/2)),x)}
\menudownlink{An Integral of a Non-elementary Function}{ExIntNonElementary}
\spadpaste{integrate(exp(-x**2) * erf(x) / (erf(x)**3 - erf(x)**2 - erf(x) + 1),x)}
\endmenu\endscroll\end{page}

\begin{page}{Menuexlap}{Laplace Transforms}
\beginscroll\beginmenu
\menudownlink{Laplace transform with a single pole}{ExLapSimplePole}
\spadpaste{laplace(t**4 * exp(-a*t) / factorial(4), t, s)}
\menudownlink{Laplace transform of a trigonometric function}{ExLapTrigTrigh}
\spadpaste{laplace(sin(a*t) * cosh(a*t) - cos(a*t) * sinh(a*t), t, s)}
\menudownlink{Laplace transform requiring a definite integration}{ExLapDefInt}
\spadpaste{laplace(2/t * (1 - cos(a*t)), t, s)}
\menudownlink{Laplace transform of exponentials}{ExLapExpExp}
\spadpaste{laplace((exp(a*t) - exp(b*t))/t, t, s)}
\menudownlink{Laplace transform of an exponential integral}{ExLapSpecial1}
\spadpaste{laplace(exp(a*t+b)*Ei(c*t), t, s)}
\menudownlink{Laplace transform of special functions}{ExLapSpecial2}
\spadpaste{laplace(a*Ci(b*t) + c*Si(d*t), t, s)}
\endmenu\endscroll\end{page}

\begin{page}{Menuexlimit}{Limits}
\beginscroll\beginmenu
\menudownlink{Computing Limits}{ExLimitBasic}
\spadpaste{limit((x**2 - 3*x + 2)/(x**2 - 1),x = 1)}
\menudownlink{Limits of Functions with Parameters}{ExLimitParameter}
\spadpaste{limit(sinh(a*x)/tan(b*x),x = 0)}
\menudownlink{One-sided Limits}{ExLimitOneSided}
\spadpaste{limit(x * log(x),x = 0,"right")}
\spadpaste{limit(x * log(x),x = 0)}
\menudownlink{Two-sided Limits}{ExLimitTwoSided}
\spadpaste{limit(sqrt(y**2)/y,y = 0)}
\spadpaste{limit(sqrt(1 - cos(t))/t,t = 0)}
\menudownlink{Limits at Infinity}{ExLimitInfinite}
\spadpaste{limit(sqrt(3*x**2 + 1)/(5*x),x = \%plusInfinity)}
\spadpaste{limit(sqrt(3*x**2 + 1)/(5*x),x = \%minusInfinity)}
\menudownlink{Real Limits vs. Complex Limits}{ExLimitRealComplex}
\spadpaste{limit(z * sin(1/z),z = 0)}
\spadpaste{complexLimit(z * sin(1/z),z = 0)}
\menudownlink{Complex Limits at Infinity}{ExLimitComplexInfinite}
\spadpaste{complexLimit((2 + z)/(1 - z),z = \%infinity)}
\spadpaste{limit(sin(x)/x,x = \%plusInfinity)}
\spadpaste{complexLimit(sin(x)/x,x = \%infinity)}
\endmenu\endscroll\end{page}

\begin{page}{Menuexmatrix}{Matrices}
\beginscroll\beginmenu
\menudownlink{Basic Arithmetic Operations on Matrices}{ExMatrixBasicFunction}
\spadpaste{m1 := matrix([[1,-2,1],[4,2,-4]]) \bound{m1}}
\spadpaste{m2 := matrix([[1,0,2],[20,30,10],[0,200,100]]) \bound{m2}}
\spadpaste{m3 := matrix([[1,2,3],[2,4,6]]) \bound{m3}}
\spadpaste{m1 + m3 \free{m1} \free{m3}}
\spadpaste{100 * m1 \free{m1}}
\spadpaste{m1 * m2 \free{m1} \free{m2}}
\spadpaste{-m1 + m3 * m2 \free{m1} \free{m2} \free{m3}}
\spadpaste{m3 *vector([1,0,1]) \free{m3}}
\menudownlink{Constructing new Matrices}{ExConstructMatrix}
\spadpaste{diagonalMatrix([1,2,3,2,1])}
\spadpaste{subMatrix(matrix([[0,1,2,3,4],[5,6,7,8,9],[10,11,12,13,14]]), 1,3,2,4)}
\spadpaste{horizConcat(matrix([[1,2,3],[6,7,8]]),matrix([[11,12,13],[55,77,88]])) }
\spadpaste{vertConcat(matrix([[1,2,3],[6,7,8]]),matrix([[11,12,13],[55,77,88]])) }
\spadpaste{b:=matrix([[0,1,2,3,4],[5,6,7,8,9],[10,11,12,13,14]]) \bound{b}}
\spadpaste{setsubMatrix!(b,1,1,transpose(subMatrix(b,1,3,1,3)))\free{b}}
\menudownlink{Trace of a Matrix}{ExTraceMatrix}
\spadpaste{trace( matrix([[1,x,x**2,x**3],[1,y,y**2,y**3],[1,z,z**2,z**3],[1,u,u**2,u**3]]) )}
\menudownlink{Determinant of a Matrix}{ExDeterminantMatrix}
\spadpaste{determinant(matrix([[1,2,3,4],[2,3,2,5],[3,4,5,6],[4,1,6,7]]))}
\menudownlink{Inverse of a Matrix}{ExInverseMatrix}
\spadpaste{inverse(matrix([[1,2,1],[-2,3,4],[-1,5,6]])) }
\menudownlink{Rank of a Matrix}{ExRankMatrix}
\spadpaste{rank(matrix([[0,4,1],[5,3,-7],[-5,5,9]]))}
\endmenu\endscroll\end{page}

\begin{page}{Menuexplot2d}{2-D Graphics}
\beginscroll\beginmenu
\menudownlink{Plotting Functions of One Variable}{ExPlot2DFunctions}
\graphpaste{draw(sin(tan(x)) - tan(sin(x)),x = 0..6)}
\menudownlink{Plotting Parametric Curves}{ExPlot2DParametric}
\graphpaste{draw(curve(9 * sin(3*t/4),8 * sin(t)),t = -4*\%pi..4*\%pi)}
\menudownlink{Plotting Using Polar Coordinates}{ExPlot2DPolar}
\graphpaste{draw(sin(4*t/7),t = 0..14*\%pi,coordinates == polar)}
\menudownlink{Plotting Plane Algebraic Curves}{ExPlot2DAlgebraic}
\graphpaste{draw(y**2 + y - (x**3 - x) = 0, x, y, range == [-2..2,-2..1])}
\endmenu\endscroll\end{page}

\begin{page}{Menuexplot3d}{3-D Graphics}
\beginscroll\beginmenu
\menudownlink{Plotting Functions of Two Variables}{ExPlot3DFunctions}
\graphpaste{draw(cos(x*y),x = -3..3,y = -3..3)}
\menudownlink{Plotting Parametric Surfaces}{ExPlot3DParametricSurface}
\graphpaste{draw(surface(5*sin(u)*cos(v),4*sin(u)*sin(v),3*cos(u)),u=0..\%pi,v=0..2*\%pi)}
\graphpaste{draw(surface(u*cos(v),u*sin(v),u),u=0..4,v=0..2*\%pi)}
\menudownlink{Plotting Parametric Curves}{ExPlot3DParametricCurve}
\graphpaste{draw(curve(cos(t),sin(t),t),t=0..6)}
\graphpaste{draw(curve(t,t**2,t**3),t=-3..3)}
\endmenu\endscroll\end{page}

\begin{page}{Menuexseries}{Series}
\beginscroll\beginmenu
\menudownlink{Converting Expressions to Series}{ExSeriesConvert}
\spadpaste{series(sin(a*x),x = 0)}
\spadpaste{series(sin(a*x),a = \%pi/4)}
\menudownlink{Manipulating Power Series}{ExSeriesManipulate}
\spadpaste{f := series(1/(1-x),x = 0) \bound{f}}
\spadpaste{f ** 2 \free{f}}
\menudownlink{Functions on Power Series}{ExSeriesFunctions}
\spadpaste{f := series(1/(1-x),x = 0) \bound{f1}}
\spadpaste{g := log(f) \free{f1} \bound{g}}
\spadpaste{exp(g) \free{g}}
\menudownlink{Substituting Numerical Values in Power Series}{ExSeriesSubstitution}
\spadpaste{f := taylor(exp(x)) \bound{f2}}
\spadpaste{eval(f,1.0) \free{f2}}
\endmenu\endscroll\end{page}

\begin{page}{Menuexsum}{Summations}
\beginscroll\beginmenu
\menudownlink{Summing the Entries of a List I}{ExSumListEntriesI}
\spadpaste{[i for i in 1..15]}
\spadpaste{reduce(+,[i for i in 1..15])}
\menudownlink{Summing the Entries of a List II}{ExSumListEntriesII}
\spadpaste{[n**2 for n in 5..20]}
\spadpaste{reduce(+,[n**2 for n in 5..20])}
\menudownlink{Approximating e}{ExSumApproximateE}
\spadpaste{reduce(+,[1.0/factorial(n) for n in 0..20])}
\menudownlink{Closed Form Summations}{ExSumClosedForm}
\spadpaste{s := sum(k**2,k = a..b) \bound{s}}
\spadpaste{eval(s,[a,b],[1,25]) \free{s}}
\spadpaste{reduce(+,[i**2 for i in 1..25])}
\menudownlink{Sums of Cubes}{ExSumCubes}
\spadpaste{sum(k**3,k = 1..n)}
\spadpaste{sum(k,k = 1..n) ** 2}
\menudownlink{Sums of Polynomials}{ExSumPolynomial}
\spadpaste{sum(3*k**2/(c**2 + 1) + 12*k/d,k = (3*a)..(4*b))}
\menudownlink{Sums of General Functions}{ExSumGeneralFunction}
\spadpaste{sum(k * x**k,k = 1..n)}
\menudownlink{Infinite Sums}{ExSumInfinite}
\spadpaste{limit( sum(1/(k * (k + 2)),k = 1..n) ,n = \%plusInfinity)}
\endmenu\endscroll\end{page}