aboutsummaryrefslogtreecommitdiff
path: root/src/hyper/pages/ZDSOLVE.pht
blob: fccef013dba420d872892141131abd468400b57d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch1}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull1}{ZeroDimensionalSolvePackageXmpPageEmpty1}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{R := Integer\bound{R }}
\indentrel{3}\begin{verbatim}
   (1)  Integer
                                           Type: Domain
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty1}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty1}{ZeroDimensionalSolvePackageXmpPagePatch1}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty1}{\showpaste}
\tab{5}\spadcommand{R := Integer\bound{R }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch2}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull2}{ZeroDimensionalSolvePackageXmpPageEmpty2}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{ls : List Symbol := [x,y,z,t]\bound{ls }}
\indentrel{3}\begin{verbatim}
   (2)  [x,y,z,t]
                                      Type: List Symbol
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty2}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty2}{ZeroDimensionalSolvePackageXmpPagePatch2}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty2}{\showpaste}
\tab{5}\spadcommand{ls : List Symbol := [x,y,z,t]\bound{ls }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch3}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull3}{ZeroDimensionalSolvePackageXmpPageEmpty3}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{ls2 : List Symbol := [x,y,z,t,new()$Symbol]\bound{ls2 }}
\indentrel{3}\begin{verbatim}
   (3)  [x,y,z,t,%A]
                                      Type: List Symbol
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty3}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty3}{ZeroDimensionalSolvePackageXmpPagePatch3}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty3}{\showpaste}
\tab{5}\spadcommand{ls2 : List Symbol := [x,y,z,t,new()$Symbol]\bound{ls2 }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch4}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull4}{ZeroDimensionalSolvePackageXmpPageEmpty4}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{pack := ZDSOLVE(R,ls,ls2)\free{ls }\free{ls2 }\free{R }\bound{pack }}
\indentrel{3}\begin{verbatim}
   (4)
  ZeroDimensionalSolvePackage(Integer,[x,y,z,t],[x,y,z,t,
  %A])
                                           Type: Domain
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty4}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty4}{ZeroDimensionalSolvePackageXmpPagePatch4}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty4}{\showpaste}
\tab{5}\spadcommand{pack := ZDSOLVE(R,ls,ls2)\free{ls }\free{ls2 }\free{R }\bound{pack }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch5}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull5}{ZeroDimensionalSolvePackageXmpPageEmpty5}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull5}{\hidepaste}
\tab{5}\spadcommand{p1 := x**2*y*z + x*y**2*z + x*y*z**2 + x*y*z + x*y + x*z + y*z\bound{p1 }}
\indentrel{3}\begin{verbatim}
             2       2     2
   (5)  x y z  + (x y  + (x  + x + 1)y + x)z + x y
                               Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty5}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty5}{ZeroDimensionalSolvePackageXmpPagePatch5}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty5}{\showpaste}
\tab{5}\spadcommand{p1 := x**2*y*z + x*y**2*z + x*y*z**2 + x*y*z + x*y + x*z + y*z\bound{p1 }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch6}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull6}{ZeroDimensionalSolvePackageXmpPageEmpty6}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull6}{\hidepaste}
\tab{5}\spadcommand{p2 := x**2*y**2*z + x*y**2*z**2 + x**2*y*z + x*y*z + y*z + x + z\bound{p2 }}
\indentrel{3}\begin{verbatim}
           2 2     2 2     2
   (6)  x y z  + (x y  + (x  + x + 1)y + 1)z + x
                               Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty6}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty6}{ZeroDimensionalSolvePackageXmpPagePatch6}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty6}{\showpaste}
\tab{5}\spadcommand{p2 := x**2*y**2*z + x*y**2*z**2 + x**2*y*z + x*y*z + y*z + x + z\bound{p2 }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch7}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull7}{ZeroDimensionalSolvePackageXmpPageEmpty7}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull7}{\hidepaste}
\tab{5}\spadcommand{p3 := x**2*y**2*z**2 + x**2*y**2*z + x*y**2*z + x*y*z + x*z + z + 1\bound{p3 }}
\indentrel{3}\begin{verbatim}
         2 2 2      2      2
   (7)  x y z  + ((x  + x)y  + x y + x + 1)z + 1
                               Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty7}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty7}{ZeroDimensionalSolvePackageXmpPagePatch7}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty7}{\showpaste}
\tab{5}\spadcommand{p3 := x**2*y**2*z**2 + x**2*y**2*z + x*y**2*z + x*y*z + x*z + z + 1\bound{p3 }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch8}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull8}{ZeroDimensionalSolvePackageXmpPageEmpty8}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull8}{\hidepaste}
\tab{5}\spadcommand{lp := [p1, p2, p3]\free{p1 }\free{p2 }\free{p3 }\bound{lp }}
\indentrel{3}\begin{verbatim}
   (8)
         2       2     2
   [x y z  + (x y  + (x  + x + 1)y + x)z + x y,
       2 2     2 2     2
    x y z  + (x y  + (x  + x + 1)y + 1)z + x,
     2 2 2      2      2
    x y z  + ((x  + x)y  + x y + x + 1)z + 1]
                          Type: List Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty8}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty8}{ZeroDimensionalSolvePackageXmpPagePatch8}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty8}{\showpaste}
\tab{5}\spadcommand{lp := [p1, p2, p3]\free{p1 }\free{p2 }\free{p3 }\bound{lp }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch9}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull9}{ZeroDimensionalSolvePackageXmpPageEmpty9}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull9}{\hidepaste}
\tab{5}\spadcommand{triangSolve(lp)$pack\free{lp }\free{pack }}
\indentrel{3}\begin{verbatim}
   (9)
   [
     {
          20     19      18      17       16      15
         z   - 6z   - 41z   + 71z   + 106z   + 92z
       + 
             14       13       12       11       10
         197z   + 145z   + 257z   + 278z   + 201z
       + 
             9       8       7       6      5       4
         278z  + 257z  + 145z  + 197z  + 92z  + 106z
       + 
            3      2
         71z  - 41z  - 6z + 1
       ,

                      19            18             17
             14745844z   + 50357474z   - 130948857z
           + 
                         16             15             14
             - 185261586z   - 180077775z   - 338007307z
           + 
                         13             12             11
             - 275379623z   - 453190404z   - 474597456z
           + 
                         10             9             8
             - 366147695z   - 481433567z  - 430613166z
           + 
                         7             6             5
             - 261878358z  - 326073537z  - 163008796z
           + 
                         4             3            2
             - 177213227z  - 104356755z  + 65241699z
           + 
             9237732z - 1567348
        *
           y
       + 
                 19           18            17
         1917314z   + 6508991z   - 16973165z
       + 
                    16            15            14
         - 24000259z   - 23349192z   - 43786426z
       + 
                    13            12            11
         - 35696474z   - 58724172z   - 61480792z
       + 
                    10            9            8
         - 47452440z   - 62378085z  - 55776527z
       + 
                    7            6            5
         - 33940618z  - 42233406z  - 21122875z
       + 
                    4            3           2
         - 22958177z  - 13504569z  + 8448317z  + 1195888z
       + 
         - 202934
       ,

               3       2       3    2               2
             (z  - 2z)y  + (- z  - z  - 2z - 1)y - z  - z
           + 
             1
        *
           x
       + 
          2
         z  - 1
       }
     ]
             Type: List RegularChain(Integer,[x,y,z,t])
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty9}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty9}{ZeroDimensionalSolvePackageXmpPagePatch9}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty9}{\showpaste}
\tab{5}\spadcommand{triangSolve(lp)$pack\free{lp }\free{pack }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch10}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull10}{ZeroDimensionalSolvePackageXmpPageEmpty10}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull10}{\hidepaste}
\tab{5}\spadcommand{univariateSolve(lp)$pack\free{lp }\free{pack }}
\indentrel{3}\begin{verbatim}
   (10)
   [
     [
       complexRoots =
            12      11      10     9     8      7      6
           ?   - 12?   + 24?   + 4?  - 9?  + 27?  - 21?
         + 
              5     4     3      2
           27?  - 9?  + 4?  + 24?  - 12? + 1
       ,

       coordinates =
         [
                       11        10         9        8
             63x + 62%A   - 721%A   + 1220%A  + 705%A
           + 
                    7         6        5         4       3
             - 285%A  + 1512%A  - 735%A  + 1401%A  - 21%A
           + 
                  2
             215%A  + 1577%A - 142
           ,

                       11        10         9        8
             63y - 75%A   + 890%A   - 1682%A  - 516%A
           + 
                  7         6         5         4        3
             588%A  - 1953%A  + 1323%A  - 1815%A  + 426%A
           + 
                    2
             - 243%A  - 1801%A + 679
           ,
          z - %A]
       ]
     ,

                     6    5    4    3    2
     [complexRoots= ?  + ?  + ?  + ?  + ?  + ? + 1,
                          5       3
      coordinates= [x - %A ,y - %A ,z - %A]]
     ,

                     2
     [complexRoots= ?  + 5? + 1,
      coordinates= [x - 1,y - 1,z - %A]]
     ]
Type: List Record(complexRoots: SparseUnivariatePolynomial Integer,coordinates: List Polynomial Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty10}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty10}{ZeroDimensionalSolvePackageXmpPagePatch10}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty10}{\showpaste}
\tab{5}\spadcommand{univariateSolve(lp)$pack\free{lp }\free{pack }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch11}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull11}{ZeroDimensionalSolvePackageXmpPageEmpty11}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull11}{\hidepaste}
\tab{5}\spadcommand{lr := realSolve(lp)$pack\free{lp }\free{pack }\bound{lr }}
\indentrel{3}\begin{verbatim}
   (11)
   [
     [%R1,

         1184459    19   2335702    18   5460230    17
         ������� %R1   - ������� %R1   - ������� %R1
         1645371          548457          182819
       + 
         79900378    16   43953929    15   13420192    14
         �������� %R1   + �������� %R1   + �������� %R1
          1645371          548457           182819
       + 
         553986    13   193381378    12   35978916    11
         ������ %R1   + ��������� %R1   + �������� %R1
          3731           1645371           182819
       + 
         358660781    10   271667666    9   118784873    8
         ��������� %R1   + ��������� %R1  + ��������� %R1
          1645371           1645371           548457
       + 
         337505020    7   1389370    6   688291    5
         ��������� %R1  + ������� %R1  + ������ %R1
          1645371          11193          4459
       + 
         3378002    4   140671876    3   32325724    2
         ������� %R1  + ��������� %R1  + �������� %R1
          42189          1645371          548457
       + 
           8270       9741532
         - ���� %R1 - �������
            343       1645371
       ,

            91729    19   487915    18   4114333    17
         - ������ %R1   + ������ %R1   + ������� %R1
           705159         705159          705159
       + 
           1276987    16   13243117    15   16292173    14
         - ������� %R1   - �������� %R1   - �������� %R1
            235053          705159           705159
       + 
           26536060    13   722714    12   5382578    11
         - �������� %R1   - ������ %R1   - ������� %R1
            705159           18081          100737
       + 
           15449995    10   14279770    9   6603890    8
         - �������� %R1   - �������� %R1  - ������� %R1
            235053           235053          100737
       + 
           409930    7   37340389    6   34893715    5
         - ������ %R1  - �������� %R1  - �������� %R1
            6027          705159          705159
       + 
           26686318    4   801511    3   17206178    2
         - �������� %R1  - ������ %R1  - �������� %R1
            705159          26117         705159
       + 
           4406102       377534
         - ������� %R1 + ������
            705159       705159
       ]
     ,

     [%R2,

         1184459    19   2335702    18   5460230    17
         ������� %R2   - ������� %R2   - ������� %R2
         1645371          548457          182819
       + 
         79900378    16   43953929    15   13420192    14
         �������� %R2   + �������� %R2   + �������� %R2
          1645371          548457           182819
       + 
         553986    13   193381378    12   35978916    11
         ������ %R2   + ��������� %R2   + �������� %R2
          3731           1645371           182819
       + 
         358660781    10   271667666    9   118784873    8
         ��������� %R2   + ��������� %R2  + ��������� %R2
          1645371           1645371           548457
       + 
         337505020    7   1389370    6   688291    5
         ��������� %R2  + ������� %R2  + ������ %R2
          1645371          11193          4459
       + 
         3378002    4   140671876    3   32325724    2
         ������� %R2  + ��������� %R2  + �������� %R2
          42189          1645371          548457
       + 
           8270       9741532
         - ���� %R2 - �������
            343       1645371
       ,

            91729    19   487915    18   4114333    17
         - ������ %R2   + ������ %R2   + ������� %R2
           705159         705159          705159
       + 
           1276987    16   13243117    15   16292173    14
         - ������� %R2   - �������� %R2   - �������� %R2
            235053          705159           705159
       + 
           26536060    13   722714    12   5382578    11
         - �������� %R2   - ������ %R2   - ������� %R2
            705159           18081          100737
       + 
           15449995    10   14279770    9   6603890    8
         - �������� %R2   - �������� %R2  - ������� %R2
            235053           235053          100737
       + 
           409930    7   37340389    6   34893715    5
         - ������ %R2  - �������� %R2  - �������� %R2
            6027          705159          705159
       + 
           26686318    4   801511    3   17206178    2
         - �������� %R2  - ������ %R2  - �������� %R2
            705159          26117         705159
       + 
           4406102       377534
         - ������� %R2 + ������
            705159       705159
       ]
     ,

     [%R3,

         1184459    19   2335702    18   5460230    17
         ������� %R3   - ������� %R3   - ������� %R3
         1645371          548457          182819
       + 
         79900378    16   43953929    15   13420192    14
         �������� %R3   + �������� %R3   + �������� %R3
          1645371          548457           182819
       + 
         553986    13   193381378    12   35978916    11
         ������ %R3   + ��������� %R3   + �������� %R3
          3731           1645371           182819
       + 
         358660781    10   271667666    9   118784873    8
         ��������� %R3   + ��������� %R3  + ��������� %R3
          1645371           1645371           548457
       + 
         337505020    7   1389370    6   688291    5
         ��������� %R3  + ������� %R3  + ������ %R3
          1645371          11193          4459
       + 
         3378002    4   140671876    3   32325724    2
         ������� %R3  + ��������� %R3  + �������� %R3
          42189          1645371          548457
       + 
           8270       9741532
         - ���� %R3 - �������
            343       1645371
       ,

            91729    19   487915    18   4114333    17
         - ������ %R3   + ������ %R3   + ������� %R3
           705159         705159          705159
       + 
           1276987    16   13243117    15   16292173    14
         - ������� %R3   - �������� %R3   - �������� %R3
            235053          705159           705159
       + 
           26536060    13   722714    12   5382578    11
         - �������� %R3   - ������ %R3   - ������� %R3
            705159           18081          100737
       + 
           15449995    10   14279770    9   6603890    8
         - �������� %R3   - �������� %R3  - ������� %R3
            235053           235053          100737
       + 
           409930    7   37340389    6   34893715    5
         - ������ %R3  - �������� %R3  - �������� %R3
            6027          705159          705159
       + 
           26686318    4   801511    3   17206178    2
         - �������� %R3  - ������ %R3  - �������� %R3
            705159          26117         705159
       + 
           4406102       377534
         - ������� %R3 + ������
            705159       705159
       ]
     ,

     [%R4,

         1184459    19   2335702    18   5460230    17
         ������� %R4   - ������� %R4   - ������� %R4
         1645371          548457          182819
       + 
         79900378    16   43953929    15   13420192    14
         �������� %R4   + �������� %R4   + �������� %R4
          1645371          548457           182819
       + 
         553986    13   193381378    12   35978916    11
         ������ %R4   + ��������� %R4   + �������� %R4
          3731           1645371           182819
       + 
         358660781    10   271667666    9   118784873    8
         ��������� %R4   + ��������� %R4  + ��������� %R4
          1645371           1645371           548457
       + 
         337505020    7   1389370    6   688291    5
         ��������� %R4  + ������� %R4  + ������ %R4
          1645371          11193          4459
       + 
         3378002    4   140671876    3   32325724    2
         ������� %R4  + ��������� %R4  + �������� %R4
          42189          1645371          548457
       + 
           8270       9741532
         - ���� %R4 - �������
            343       1645371
       ,

            91729    19   487915    18   4114333    17
         - ������ %R4   + ������ %R4   + ������� %R4
           705159         705159          705159
       + 
           1276987    16   13243117    15   16292173    14
         - ������� %R4   - �������� %R4   - �������� %R4
            235053          705159           705159
       + 
           26536060    13   722714    12   5382578    11
         - �������� %R4   - ������ %R4   - ������� %R4
            705159           18081          100737
       + 
           15449995    10   14279770    9   6603890    8
         - �������� %R4   - �������� %R4  - ������� %R4
            235053           235053          100737
       + 
           409930    7   37340389    6   34893715    5
         - ������ %R4  - �������� %R4  - �������� %R4
            6027          705159          705159
       + 
           26686318    4   801511    3   17206178    2
         - �������� %R4  - ������ %R4  - �������� %R4
            705159          26117         705159
       + 
           4406102       377534
         - ������� %R4 + ������
            705159       705159
       ]
     ,

     [%R5,

         1184459    19   2335702    18   5460230    17
         ������� %R5   - ������� %R5   - ������� %R5
         1645371          548457          182819
       + 
         79900378    16   43953929    15   13420192    14
         �������� %R5   + �������� %R5   + �������� %R5
          1645371          548457           182819
       + 
         553986    13   193381378    12   35978916    11
         ������ %R5   + ��������� %R5   + �������� %R5
          3731           1645371           182819
       + 
         358660781    10   271667666    9   118784873    8
         ��������� %R5   + ��������� %R5  + ��������� %R5
          1645371           1645371           548457
       + 
         337505020    7   1389370    6   688291    5
         ��������� %R5  + ������� %R5  + ������ %R5
          1645371          11193          4459
       + 
         3378002    4   140671876    3   32325724    2
         ������� %R5  + ��������� %R5  + �������� %R5
          42189          1645371          548457
       + 
           8270       9741532
         - ���� %R5 - �������
            343       1645371
       ,

            91729    19   487915    18   4114333    17
         - ������ %R5   + ������ %R5   + ������� %R5
           705159         705159          705159
       + 
           1276987    16   13243117    15   16292173    14
         - ������� %R5   - �������� %R5   - �������� %R5
            235053          705159           705159
       + 
           26536060    13   722714    12   5382578    11
         - �������� %R5   - ������ %R5   - ������� %R5
            705159           18081          100737
       + 
           15449995    10   14279770    9   6603890    8
         - �������� %R5   - �������� %R5  - ������� %R5
            235053           235053          100737
       + 
           409930    7   37340389    6   34893715    5
         - ������ %R5  - �������� %R5  - �������� %R5
            6027          705159          705159
       + 
           26686318    4   801511    3   17206178    2
         - �������� %R5  - ������ %R5  - �������� %R5
            705159          26117         705159
       + 
           4406102       377534
         - ������� %R5 + ������
            705159       705159
       ]
     ,

     [%R6,

         1184459    19   2335702    18   5460230    17
         ������� %R6   - ������� %R6   - ������� %R6
         1645371          548457          182819
       + 
         79900378    16   43953929    15   13420192    14
         �������� %R6   + �������� %R6   + �������� %R6
          1645371          548457           182819
       + 
         553986    13   193381378    12   35978916    11
         ������ %R6   + ��������� %R6   + �������� %R6
          3731           1645371           182819
       + 
         358660781    10   271667666    9   118784873    8
         ��������� %R6   + ��������� %R6  + ��������� %R6
          1645371           1645371           548457
       + 
         337505020    7   1389370    6   688291    5
         ��������� %R6  + ������� %R6  + ������ %R6
          1645371          11193          4459
       + 
         3378002    4   140671876    3   32325724    2
         ������� %R6  + ��������� %R6  + �������� %R6
          42189          1645371          548457
       + 
           8270       9741532
         - ���� %R6 - �������
            343       1645371
       ,

            91729    19   487915    18   4114333    17
         - ������ %R6   + ������ %R6   + ������� %R6
           705159         705159          705159
       + 
           1276987    16   13243117    15   16292173    14
         - ������� %R6   - �������� %R6   - �������� %R6
            235053          705159           705159
       + 
           26536060    13   722714    12   5382578    11
         - �������� %R6   - ������ %R6   - ������� %R6
            705159           18081          100737
       + 
           15449995    10   14279770    9   6603890    8
         - �������� %R6   - �������� %R6  - ������� %R6
            235053           235053          100737
       + 
           409930    7   37340389    6   34893715    5
         - ������ %R6  - �������� %R6  - �������� %R6
            6027          705159          705159
       + 
           26686318    4   801511    3   17206178    2
         - �������� %R6  - ������ %R6  - �������� %R6
            705159          26117         705159
       + 
           4406102       377534
         - ������� %R6 + ������
            705159       705159
       ]
     ,

     [%R7,

         1184459    19   2335702    18   5460230    17
         ������� %R7   - ������� %R7   - ������� %R7
         1645371          548457          182819
       + 
         79900378    16   43953929    15   13420192    14
         �������� %R7   + �������� %R7   + �������� %R7
          1645371          548457           182819
       + 
         553986    13   193381378    12   35978916    11
         ������ %R7   + ��������� %R7   + �������� %R7
          3731           1645371           182819
       + 
         358660781    10   271667666    9   118784873    8
         ��������� %R7   + ��������� %R7  + ��������� %R7
          1645371           1645371           548457
       + 
         337505020    7   1389370    6   688291    5
         ��������� %R7  + ������� %R7  + ������ %R7
          1645371          11193          4459
       + 
         3378002    4   140671876    3   32325724    2
         ������� %R7  + ��������� %R7  + �������� %R7
          42189          1645371          548457
       + 
           8270       9741532
         - ���� %R7 - �������
            343       1645371
       ,

            91729    19   487915    18   4114333    17
         - ������ %R7   + ������ %R7   + ������� %R7
           705159         705159          705159
       + 
           1276987    16   13243117    15   16292173    14
         - ������� %R7   - �������� %R7   - �������� %R7
            235053          705159           705159
       + 
           26536060    13   722714    12   5382578    11
         - �������� %R7   - ������ %R7   - ������� %R7
            705159           18081          100737
       + 
           15449995    10   14279770    9   6603890    8
         - �������� %R7   - �������� %R7  - ������� %R7
            235053           235053          100737
       + 
           409930    7   37340389    6   34893715    5
         - ������ %R7  - �������� %R7  - �������� %R7
            6027          705159          705159
       + 
           26686318    4   801511    3   17206178    2
         - �������� %R7  - ������ %R7  - �������� %R7
            705159          26117         705159
       + 
           4406102       377534
         - ������� %R7 + ������
            705159       705159
       ]
     ,

     [%R8,

         1184459    19   2335702    18   5460230    17
         ������� %R8   - ������� %R8   - ������� %R8
         1645371          548457          182819
       + 
         79900378    16   43953929    15   13420192    14
         �������� %R8   + �������� %R8   + �������� %R8
          1645371          548457           182819
       + 
         553986    13   193381378    12   35978916    11
         ������ %R8   + ��������� %R8   + �������� %R8
          3731           1645371           182819
       + 
         358660781    10   271667666    9   118784873    8
         ��������� %R8   + ��������� %R8  + ��������� %R8
          1645371           1645371           548457
       + 
         337505020    7   1389370    6   688291    5
         ��������� %R8  + ������� %R8  + ������ %R8
          1645371          11193          4459
       + 
         3378002    4   140671876    3   32325724    2
         ������� %R8  + ��������� %R8  + �������� %R8
          42189          1645371          548457
       + 
           8270       9741532
         - ���� %R8 - �������
            343       1645371
       ,

            91729    19   487915    18   4114333    17
         - ������ %R8   + ������ %R8   + ������� %R8
           705159         705159          705159
       + 
           1276987    16   13243117    15   16292173    14
         - ������� %R8   - �������� %R8   - �������� %R8
            235053          705159           705159
       + 
           26536060    13   722714    12   5382578    11
         - �������� %R8   - ������ %R8   - ������� %R8
            705159           18081          100737
       + 
           15449995    10   14279770    9   6603890    8
         - �������� %R8   - �������� %R8  - ������� %R8
            235053           235053          100737
       + 
           409930    7   37340389    6   34893715    5
         - ������ %R8  - �������� %R8  - �������� %R8
            6027          705159          705159
       + 
           26686318    4   801511    3   17206178    2
         - �������� %R8  - ������ %R8  - �������� %R8
            705159          26117         705159
       + 
           4406102       377534
         - ������� %R8 + ������
            705159       705159
       ]
     ]
           Type: List List RealClosure Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty11}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty11}{ZeroDimensionalSolvePackageXmpPagePatch11}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty11}{\showpaste}
\tab{5}\spadcommand{lr := realSolve(lp)$pack\free{lp }\free{pack }\bound{lr }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch12}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull12}{ZeroDimensionalSolvePackageXmpPageEmpty12}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull12}{\hidepaste}
\tab{5}\spadcommand{\# lr\free{lr }}
\indentrel{3}\begin{verbatim}
   (12)  8
                                  Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty12}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty12}{ZeroDimensionalSolvePackageXmpPagePatch12}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty12}{\showpaste}
\tab{5}\spadcommand{\# lr\free{lr }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch13}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull13}{ZeroDimensionalSolvePackageXmpPageEmpty13}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull13}{\hidepaste}
\tab{5}\spadcommand{[[approximate(r,1/1000000) for r in point] for point in lr]\free{lr }}
\indentrel{3}\begin{verbatim}
   (13)
   [
        10048059
     [- ��������,
         2097152

        450305731698538794352439791383896641459673197621_
         17682193358812083855163140589245671760914236296_
         95777403099833360761048898228916578137094309838_
         59733113720258484693913237615701950676035760116_
         59174549868153820987890948515234203928112931261_
         41329856546977145464661495487825919941188447041_
         72244049192156726354215802806143775884436463441_
         0045253024786561923163288214175
      /
        450305728302524548851651180698582663508310069375_
         73204652805547068656449495775099168672018894380_
         90408354817931718593862797624551518983570793048_
         77442429148870882984032418920030143612331486020_
         08214437337907553112436329198648954217042289495_
         71290016119498807957023663865443069392027148979_
         68826671232335604349152343406892427528041733857_
         4817381189277066143312396681216
       ,

        210626076882347507389479868048601659624960714869_
         06855387636837150206396808586496507900558895056_
         46893309447097099937802187329095325898785247249_
         02071750498366048207515661873872451468533306001_
         12029646351663813515432559822002503052839810868_
         37110614842307026091211297929876896285681830479_
         05476005638076266490561846205530604781619178201_
         15887037891389881895
      /
        210626060949846419247211380481647417534196295329_
         64341024139031423687579676852738885855909759652_
         11778862189872881953943640246297357061959812326_
         10365979902512686325867656720234210687703171018_
         42474841814232889218376812370627084702957062184_
         85928867400771937828499200923760593314168901000_
         66637389634759811822855673103707202647449677622_
         83837629939232800768
       ]
     ,

        2563013
     [- �������,
        2097152

       -
           261134617679192778969861769323775771923825996_
            30635417819227523304401898996680729283384907_
            68623593207442125925986733815932243504809294_
            83752303023733723680666816744617300172727135_
            3311571242897
         /
           116522540050522253058398191600458914375722661_
            02768589900087901348199149409224137539839713_
            94019523433320408139928153188829495755455163_
            96341761930839597754479714023146923426903492_
            1938055593984
       ,

        357259455027591722109658872961578827299851705467_
         56032395781981410060340917352828265906219023044_
         66963941971038923304526273329316373757450061978_
         9892286110976997087250466235373
      /
        103954826934559893687707124483402605580081455112_
         01705922005223665917594096594864423391410294529_
         50265179989960104811875822530205346505131581243_
         9017247289173865014702966308864
       ]
     ,

        1715967
     [- �������,
        2097152

       -
           421309353378430352108483951797708239037726150_
            39695862248289984366060306560763593745648137_
            73498376603121267822565801436206939519951465_
            18222580524697287410022543952491
         /
           944181414418537445864969203434922405243659747_
            09662536639306419607958058825854931998401916_
            99917659443264824641135187383583888147867340_
            19307857605820364195856822304768
       ,

        763583334711264422251562542441083122534747566900_
         85893388341621725019049943763467308768090428452_
         08919919925302105720971453918982731389072591403_
         5
      /
        262418876408609719978429761047806663393423046789_
         58516022785809785037845492057884990196406022669_
         66026891580103543567625039018629887141284916756_
         48
       ]
     ,

         437701
     [- �������,
        2097152

        168310690863834958832217233265422591356298631318_
         19510314527501614414974734553281507213648683555_
         79646781603507777199075077835213366484533654913_
         83623741304759
      /
        168310686809521338900170998270591363896307766873_
         12261111677851880049074252262986803258878109626_
         14140298597366984264887998908377068799998454233_
         81649008099328
       ,

        496155010983501018642268101342210873595871480100_
         37606397079680966469128267084728344431172391721_
         9104249213450966312411133
      /
        496154987275773831550919207821020902985289711861_
         10971262363840408293765926191431317025486746479_
         2718363492160482442215424
       ]
     ,

       222801
     [�������,
      2097152

       -
           899488488040242826510759512197069142713604569_
            25419782755730018652137599215881377166961263_
            49101655220195142994932299137183241705867672_
            383477
         /
           116788999866502637217776510069188858270896996_
            02299347696908357524570777794164352094737678_
            66507769405888942764587718542434255625992456_
            372224
       ,

       -
           238970488813315687832080154437380839561277150_
            92084910198474529918855095465195254678390166_
            13593999693886640036283570552321155037871291_
            458703265
         /
           535548727364509632609040328668993190598822544_
            46854114332215938336811929575628336714686542_
            90340746993656285925599117602120446183443145_
            479421952
       ]
     ,

       765693
     [�������,
      2097152

        855896921981671626787324476117819808872469895861_
         66701402137657543220023032516857861186783308402_
         03328837654339523418704917749518340772512899000_
         391009630373148561
      /
        294144244553301079097642841137639349981558021594_
         58569179064525354957230138568189417023302287798_
         90141296236721138154231997238917322156711965244_
         4639331719460159488
       ,

       -
           205761823058257210124765032486024256111130258_
            15435888088439236627675493822416593627122907_
            77612800192921420574408948085193743688582762_
            2246433251878894899015
         /
           267159820332573553809795235350145022057631375_
            98908350970917225206427101987719026671839489_
            06289863714759678360292483949204616471537777_
            775324180661095366656
       ]
     ,

      5743879
     [�������,
      2097152

        107628881696890684795554639477357020817145672494_
         26186140236631235747689608504342639713980725465_
         92772662158833449797698617455397887562900072984_
         76800060834355318980169340872720504761255988923_
         27575638305286889535354218094827710589175426028_
         90060941949620874083007858366669453501766248414_
         88732463225
      /
        313176895708031794664846194002355204419037661345_
         85849862285496319161966016162197817656155325322_
         94746529648276430583810894079374566460757823146_
         88858119555602920851521883888320031865840746939_
         94260632605898286123092315966691297079864813198_
         51571942927230340622934023923486703042068153044_
         0845099008
       ,

       -
           211328669918575091836412047556545843787017248_
            98654859943898281353352644446652845575264927_
            34931691731407872701432935503473348172076098_
            72054584900878007756416053431789468836611952_
            97399805029441626685500981279619504962102219_
            42878089359674925850594427768502251789758706_
            752831632503615
         /
           162761558493798758024290662434710458088914446_
            61684597180431538394083725255333098080703636_
            99585502216011211087103263609551026027769414_
            08739114812622116813978168258743807532259146_
            61319399754572005223498385689642856344480185_
            62038272378787354460106106141518010935617205_
            1706396253618176
       ]
     ,

      19739877
     [��������,
       2097152

       -
           299724993683270330379901580486152094921504038_
            75007071777012857667201925305794224789535660_
            24359860143101547801638082771611160372212874_
            84777803580987284314922548423836585801362934_
            17053217025823333509180096017899370239859353_
            04900460493389873837030853410347089908880814_
            85398113201846458245880061539477074169948729_
            58759602107502158919488144768548710315309312_
            95467332190133702671098200902282300510751860_
            71859284570302778073977965258138627622392869_
            96106809728023675
         /
           230843327485227859072891008119181102390650414_
            13214326461239367948739333192706089607021381_
            93417647898360620229519176632937631786851455_
            01476602720625902225250555174182368889688380_
            66366025744317604722402920931967294751602472_
            68834121141893318848728661844434927287285112_
            89708076755286489505658586403317856591038706_
            50061128015164035227410373609905560544769495_
            27059227070809593049491257519554708879259595_
            52929920110858560812556635485429471554031675_
            979542656381353984
       ,

       -
           512818926354822848909627639786894008060093841_
            06630804594079663358450092641094905204598253_
            16250084723010047035024497436523038925818959_
            28931293158470135392762143543439867426304729_
            39091228501338519906964902315660943719943337_
            95070782624011727587749989296611277318372294_
            62420711653791043655457414608288470130554391_
            26204193548854107359401577758966028223645758_
            64611831512943973974715166920465061850603762_
            87516256195847052412587282839139194642913955
         /
           228828193977843933053120879318129047118363109_
            24553689903863908242435094636442362497730806_
            47438987739144921607794682653851741189091711_
            74186814511497833728419182249767586835872948_
            66447308566225526872092037244118004814057028_
            37198310642291275676195774614443815996713502_
            62939174978359004147086012775237299648862774_
            26724876224800632688088893248918508424949343_
            47337603075939980268208482904859678177751444_
            65749979827872616963053217673201717237252096
       ]
     ]
                       Type: List List Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty13}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty13}{ZeroDimensionalSolvePackageXmpPagePatch13}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty13}{\showpaste}
\tab{5}\spadcommand{[[approximate(r,1/1000000) for r in point] for point in lr]\free{lr }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch14}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull14}{ZeroDimensionalSolvePackageXmpPageEmpty14}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull14}{\hidepaste}
\tab{5}\spadcommand{lpr := positiveSolve(lp)$pack\free{lp }\free{pack }\bound{lpr }}
\indentrel{3}\begin{verbatim}
   (14)  []
           Type: List List RealClosure Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty14}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty14}{ZeroDimensionalSolvePackageXmpPagePatch14}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty14}{\showpaste}
\tab{5}\spadcommand{lpr := positiveSolve(lp)$pack\free{lp }\free{pack }\bound{lpr }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch15}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull15}{ZeroDimensionalSolvePackageXmpPageEmpty15}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull15}{\hidepaste}
\tab{5}\spadcommand{f0 := x**3 + y + z + t- 1\bound{f0 }}
\indentrel{3}\begin{verbatim}
                  3
   (15)  z + y + x  + t - 1
                               Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty15}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty15}{ZeroDimensionalSolvePackageXmpPagePatch15}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty15}{\showpaste}
\tab{5}\spadcommand{f0 := x**3 + y + z + t- 1\bound{f0 }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch16}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull16}{ZeroDimensionalSolvePackageXmpPageEmpty16}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull16}{\hidepaste}
\tab{5}\spadcommand{f1 := x + y**3 + z + t -1\bound{f1 }}
\indentrel{3}\begin{verbatim}
              3
   (16)  z + y  + x + t - 1
                               Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty16}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty16}{ZeroDimensionalSolvePackageXmpPagePatch16}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty16}{\showpaste}
\tab{5}\spadcommand{f1 := x + y**3 + z + t -1\bound{f1 }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch17}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull17}{ZeroDimensionalSolvePackageXmpPageEmpty17}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull17}{\hidepaste}
\tab{5}\spadcommand{f2 := x + y + z**3 + t-1\bound{f2 }}
\indentrel{3}\begin{verbatim}
          3
   (17)  z  + y + x + t - 1
                               Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty17}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty17}{ZeroDimensionalSolvePackageXmpPagePatch17}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty17}{\showpaste}
\tab{5}\spadcommand{f2 := x + y + z**3 + t-1\bound{f2 }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch18}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull18}{ZeroDimensionalSolvePackageXmpPageEmpty18}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull18}{\hidepaste}
\tab{5}\spadcommand{f3 := x + y + z + t**3 -1\bound{f3 }}
\indentrel{3}\begin{verbatim}
                      3
   (18)  z + y + x + t  - 1
                               Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty18}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty18}{ZeroDimensionalSolvePackageXmpPagePatch18}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty18}{\showpaste}
\tab{5}\spadcommand{f3 := x + y + z + t**3 -1\bound{f3 }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch19}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull19}{ZeroDimensionalSolvePackageXmpPageEmpty19}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull19}{\hidepaste}
\tab{5}\spadcommand{lf := [f0, f1, f2, f3]\free{f0 }\free{f1 }\free{f2 }\free{f3 }\bound{lf }}
\indentrel{3}\begin{verbatim}
   (19)
             3               3
   [z + y + x  + t - 1, z + y  + x + t - 1,
     3                               3
    z  + y + x + t - 1, z + y + x + t  - 1]
                          Type: List Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty19}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty19}{ZeroDimensionalSolvePackageXmpPagePatch19}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty19}{\showpaste}
\tab{5}\spadcommand{lf := [f0, f1, f2, f3]\free{f0 }\free{f1 }\free{f2 }\free{f3 }\bound{lf }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch20}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull20}{ZeroDimensionalSolvePackageXmpPageEmpty20}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull20}{\hidepaste}
\tab{5}\spadcommand{lts := triangSolve(lf)$pack\free{lf }\free{pack }\bound{lts }}
\indentrel{3}\begin{verbatim}
   (20)
   [
       2           3        3
     {t  + t + 1, z  - z - t  + t,

                 3      2
         (3z + 3t  - 3)y
       + 
            2      3           6     3            3      2
         (3z  + (6t  - 6)z + 3t  - 6t  + 3)y + (3t  - 3)z
       + 
            6     3          9     6     3
         (3t  - 6t  + 3)z + t  - 3t  + 5t  - 3t
       ,
      x + y + z}
     ,

       16     13     10     7      4      2
     {t   - 6t   + 9t   + 4t  + 15t  - 54t  + 27,

                     15            14             13
             4907232t   + 40893984t   - 115013088t
           + 
                      12            11             10
             22805712t   + 36330336t   + 162959040t
           + 
                         9             8             7
             - 159859440t  - 156802608t  + 117168768t
           + 
                       6             5             4
             126282384t  - 129351600t  + 306646992t
           + 
                       3              2
             475302816t  - 1006837776t  - 237269088t
           + 
             480716208
        *
           z
       + 
            54       51        48      46         45
         48t   - 912t   + 8232t   - 72t   - 46848t
       + 
              43          42        40          39
         1152t   + 186324t   - 3780t   - 543144t
       + 
                38         37           36         35
         - 3168t   - 21384t   + 1175251t   + 41184t
       + 
                34           33          32           31
         278003t   - 1843242t   - 301815t   - 1440726t
       + 
                 30           29           28          27
         1912012t   + 1442826t   + 4696262t   - 922481t
       + 
                   26            25          24
         - 4816188t   - 10583524t   - 208751t
       + 
                  23            22          21
         11472138t   + 16762859t   - 857663t
       + 
                    20            19           18
         - 19328175t   - 18270421t   + 4914903t
       + 
                  17            16           15
         22483044t   + 12926517t   - 8605511t
       + 
                    14           13           12
         - 17455518t   - 5014597t   + 8108814t
       + 
                 11          10           9           8
         8465535t   + 190542t   - 4305624t  - 2226123t
       + 
                7           6          5          4
         661905t  + 1169775t  + 226260t  - 209952t
       + 
                  3
         - 141183t  + 27216t
       ,

                 3      2
         (3z + 3t  - 3)y
       + 
            2      3           6     3            3      2
         (3z  + (6t  - 6)z + 3t  - 6t  + 3)y + (3t  - 3)z
       + 
            6     3          9     6     3
         (3t  - 6t  + 3)z + t  - 3t  + 5t  - 3t
       ,
                   3
      x + y + z + t  - 1}
     ,
              2                       2
    {t,z - 1,y  - 1,x + y}, {t - 1,z,y  - 1,x + y},
            2
    {t - 1,z  - 1,z y + 1,x},

       16     13     10     7      4      2
     {t   - 6t   + 9t   + 4t  + 15t  - 54t  + 27,

                     29            28             27
             4907232t   + 40893984t   - 115013088t
           + 
                       26             25             24
             - 1730448t   - 168139584t   + 738024480t
           + 
                         23             22              21
             - 195372288t   + 315849456t   - 2567279232t
           + 
                       20              19              18
             937147968t   + 1026357696t   + 4780488240t
           + 
                          17              16
             - 2893767696t   - 5617160352t
           + 
                          15              14
             - 3427651728t   + 5001100848t
           + 
                        13              12             11
             8720098416t   + 2331732960t   - 499046544t
           + 
                           10              9
             - 16243306272t   - 9748123200t
           + 
                        8               7               6
             3927244320t  + 25257280896t  + 10348032096t
           + 
                           5               4             3
             - 17128672128t  - 14755488768t  + 544086720t
           + 
                         2
             10848188736t  + 1423614528t - 2884297248
        *
           z
       + 
              68        65         62       60          59
         - 48t   + 1152t   - 13560t   + 360t   + 103656t
       + 
                57          56         54           53
         - 7560t   - 572820t   + 71316t   + 2414556t
       + 
              52          51           50         49
         2736t   - 402876t   - 7985131t   - 49248t
       + 
                 48            47          46           45
         1431133t   + 20977409t   + 521487t   - 2697635t
       + 
                    44           43           42
         - 43763654t   - 3756573t   - 2093410t
       + 
                  41            40            39
         71546495t   + 19699032t   + 35025028t
       + 
                    38            37             36
         - 89623786t   - 77798760t   - 138654191t
       + 
                  35             34             33
         87596128t   + 235642497t   + 349607642t
       + 
                    32             31             30
         - 93299834t   - 551563167t   - 630995176t
       + 
                   29             28             27
         186818962t   + 995427468t   + 828416204t
       + 
                     26              25              24
         - 393919231t   - 1076617485t   - 1609479791t
       + 
                   23              22              21
         595738126t   + 1198787136t   + 4342832069t
       + 
                      20              19              18
         - 2075938757t   - 4390835799t   - 4822843033t
       + 
                    17              16              15
         6932747678t   + 6172196808t   + 1141517740t
       + 
                      14              13              12
         - 4981677585t   - 9819815280t   - 7404299976t
       + 
                     11               10               9
         - 157295760t   + 29124027630t   + 14856038208t
       + 
                       8               7              6
         - 16184101410t  - 26935440354t  - 3574164258t
       + 
                     5               4              3
         10271338974t  + 11191425264t  + 6869861262t
       + 
                      2
         - 9780477840t  - 3586674168t + 2884297248
       ,

               3      3      2      6      3           9
             3z  + (6t  - 6)z  + (6t  - 12t  + 3)z + 2t
           + 
                 6    3
             - 6t  + t  + 3t
        *
           y
       + 
            3      3      6      3      2
         (3t  - 3)z  + (6t  - 12t  + 6)z
       + 
            9      6      3          12     9     6     3
         (4t  - 12t  + 11t  - 3)z + t   - 4t  + 5t  - 2t
       ,
                   3
      x + y + z + t  - 1}
     ,
            2
    {t - 1,z  - 1,y,x + z},

       8    7    6     5     4     3      2
     {t  + t  + t  - 2t  - 2t  - 2t  + 19t  + 19t - 8,

                     7           6           5
             2395770t  + 3934440t  - 3902067t
           + 
                        4           3            2
             - 10084164t  - 1010448t  + 32386932t
           + 
             22413225t - 10432368
        *
           z
       + 
                  7           6           5           4
         - 463519t  + 3586833t  + 9494955t  - 8539305t
       + 
                    3            2
         - 33283098t  + 35479377t  + 46263256t - 17419896
       ,

               4      3      3       6      3      2
             3z  + (9t  - 9)z  + (12t  - 24t  + 9)z
           + 
                    3                    6      4      3
             (- 152t  + 219t - 67)z - 41t  + 57t  + 25t
           + 
             - 57t + 16
        *
           y
       + 
            3      4      6      3      3
         (3t  - 3)z  + (9t  - 18t  + 9)z
       + 
                3              2
         (- 181t  + 270t - 89)z
       + 
               6       4      3                    7
         (- 92t  + 135t  + 49t  - 135t + 43)z + 27t
       + 
              6      4       3
         - 27t  - 54t  + 396t  - 486t + 144
       ,
                   3
      x + y + z + t  - 1}
     ,
            3
    {t,z - t  + 1,y - 1,x - 1}, {t - 1,z,y,x},
    {t,z - 1,y,x}, {t,z,y - 1,x}, {t,z,y,x - 1}]
             Type: List RegularChain(Integer,[x,y,z,t])
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty20}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty20}{ZeroDimensionalSolvePackageXmpPagePatch20}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty20}{\showpaste}
\tab{5}\spadcommand{lts := triangSolve(lf)$pack\free{lf }\free{pack }\bound{lts }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch21}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull21}{ZeroDimensionalSolvePackageXmpPageEmpty21}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull21}{\hidepaste}
\tab{5}\spadcommand{univariateSolve(lf)$pack\free{lf }\free{pack }}
\indentrel{3}\begin{verbatim}
   (21)
   [
     [complexRoots= ?,
      coordinates= [x - 1,y - 1,z + 1,t - %A]]
     ,
    [complexRoots= ?,coordinates= [x,y - 1,z,t - %A]],
    [complexRoots= ? - 1,coordinates= [x,y,z,t - %A]],
    [complexRoots= ?,coordinates= [x - 1,y,z,t - %A]],
    [complexRoots= ?,coordinates= [x,y,z - 1,t - %A]],

     [complexRoots= ? - 2,
      coordinates= [x - 1,y + 1,z,t - 1]]
     ,
    [complexRoots= ?,coordinates= [x + 1,y - 1,z,t - 1]],

     [complexRoots= ? - 1,
      coordinates= [x - 1,y + 1,z - 1,t]]
     ,

     [complexRoots= ? + 1,
      coordinates= [x + 1,y - 1,z - 1,t]]
     ,

                     6     3     2
     [complexRoots= ?  - 2?  + 3?  - 3,

       coordinates =
                 3                  3
         [2x + %A  + %A - 1, 2y + %A  + %A - 1, z - %A,
          t - %A]
       ]
     ,

                     5     3     2
     [complexRoots= ?  + 3?  - 2?  + 3? - 3,

       coordinates =
                              3
         [x - %A,y - %A,z + %A  + 2%A - 1,t - %A]
       ]
     ,

                     4    3     2
     [complexRoots= ?  - ?  - 2?  + 3,

       coordinates =
                3                 3
         [x + %A  - %A - 1, y + %A  - %A - 1,
                3
          z - %A  + 2%A + 1, t - %A]
       ]
     ,

     [complexRoots= ? + 1,
      coordinates= [x - 1,y - 1,z,t - %A]]
     ,

                     6     3     2
     [complexRoots= ?  + 2?  + 3?  - 3,

       coordinates =
                 3                          3
         [2x - %A  - %A - 1, y + %A, 2z - %A  - %A - 1,
          t + %A]
       ]
     ,

                     6      4      3      2
     [complexRoots= ?  + 12?  + 20?  - 45?  - 42? - 953,

       coordinates =
         [
                          5       4       3        2
             12609x + 23%A  + 49%A  - 46%A  + 362%A
           + 
             - 5015%A - 8239
           ,

                          5       4       3        2
             25218y + 23%A  + 49%A  - 46%A  + 362%A
           + 
             7594%A - 8239
           ,

                          5       4       3        2
             25218z + 23%A  + 49%A  - 46%A  + 362%A
           + 
             7594%A - 8239
           ,

                          5       4       3        2
             12609t + 23%A  + 49%A  - 46%A  + 362%A
           + 
             - 5015%A - 8239
           ]
       ]
     ,

                     5      3      2
     [complexRoots= ?  + 12?  - 16?  + 48? - 96,

       coordinates =
                 3
         [8x + %A  + 8%A - 8,2y - %A,2z - %A,2t - %A]
       ]
     ,

                     5    4     3     2
     [complexRoots= ?  + ?  - 5?  - 3?  + 9? + 3,

       coordinates =
                 3                   3
         [2x - %A  + 2%A - 1, 2y + %A  - 4%A + 1,
                 3                   3
          2z - %A  + 2%A - 1, 2t - %A  + 2%A - 1]
       ]
     ,

                     4     3     2
     [complexRoots= ?  - 3?  + 4?  - 6? + 13,

       coordinates =
                  3      2
         [9x - 2%A  + 4%A  - %A + 2,
                 3      2
          9y + %A  - 2%A  + 5%A - 1,
                 3      2
          9z + %A  - 2%A  + 5%A - 1,
                 3      2
          9t + %A  - 2%A  - 4%A - 1]
       ]
     ,

                     4      2
     [complexRoots= ?  - 11?  + 37,

       coordinates =
                 2             2                   2
         [3x - %A  + 7, 6y + %A  + 3%A - 7, 3z - %A  + 7,
                 2
          6t + %A  - 3%A - 7]
       ]
     ,

     [complexRoots= ? + 1,
      coordinates= [x - 1,y,z - 1,t + 1]]
     ,

     [complexRoots= ? + 2,
      coordinates= [x,y - 1,z - 1,t + 1]]
     ,

     [complexRoots= ? - 2,
      coordinates= [x,y - 1,z + 1,t - 1]]
     ,
    [complexRoots= ?,coordinates= [x,y + 1,z - 1,t - 1]],

     [complexRoots= ? - 2,
      coordinates= [x - 1,y,z + 1,t - 1]]
     ,
    [complexRoots= ?,coordinates= [x + 1,y,z - 1,t - 1]],

                     4     3      2
     [complexRoots= ?  + 5?  + 16?  + 30? + 57,

       coordinates =
                     3       2
         [151x + 15%A  + 54%A  + 104%A + 93,
                     3       2
          151y - 10%A  - 36%A  - 19%A - 62,
                    3       2
          151z - 5%A  - 18%A  - 85%A - 31,
                    3       2
          151t - 5%A  - 18%A  - 85%A - 31]
       ]
     ,

                     4    3     2
     [complexRoots= ?  - ?  - 2?  + 3,

       coordinates =
                3                  3
         [x - %A  + 2%A + 1, y + %A  - %A - 1, z - %A,
                3
          t + %A  - %A - 1]
       ]
     ,

                     4     3     2
     [complexRoots= ?  + 2?  - 8?  + 48,

       coordinates =
                 3
         [8x - %A  + 4%A - 8, 2y + %A,
                 3                   3
          8z + %A  - 8%A + 8, 8t - %A  + 4%A - 8]
       ]
     ,

                     5    4     3     2
     [complexRoots= ?  + ?  - 2?  - 4?  + 5? + 8,

       coordinates =
                 3            3            3
         [3x + %A  - 1,3y + %A  - 1,3z + %A  - 1,t - %A]
       ]
     ,

                     3
     [complexRoots= ?  + 3? - 1,
      coordinates= [x - %A,y - %A,z - %A,t - %A]]
     ]
Type: List Record(complexRoots: SparseUnivariatePolynomial Integer,coordinates: List Polynomial Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty21}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty21}{ZeroDimensionalSolvePackageXmpPagePatch21}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty21}{\showpaste}
\tab{5}\spadcommand{univariateSolve(lf)$pack\free{lf }\free{pack }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch22}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull22}{ZeroDimensionalSolvePackageXmpPageEmpty22}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull22}{\hidepaste}
\tab{5}\spadcommand{ts := lts.1\free{lts }\bound{ts }}
\indentrel{3}\begin{verbatim}
   (22)
     2           3        3
   {t  + t + 1, z  - z - t  + t,

               3      2
       (3z + 3t  - 3)y
     + 
          2      3           6     3            3      2
       (3z  + (6t  - 6)z + 3t  - 6t  + 3)y + (3t  - 3)z
     + 
          6     3          9     6     3
       (3t  - 6t  + 3)z + t  - 3t  + 5t  - 3t
     ,
    x + y + z}
                  Type: RegularChain(Integer,[x,y,z,t])
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty22}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty22}{ZeroDimensionalSolvePackageXmpPagePatch22}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty22}{\showpaste}
\tab{5}\spadcommand{ts := lts.1\free{lts }\bound{ts }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch23}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull23}{ZeroDimensionalSolvePackageXmpPageEmpty23}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull23}{\hidepaste}
\tab{5}\spadcommand{univariateSolve(ts)$pack\free{ts }\free{pack }}
\indentrel{3}\begin{verbatim}
   (23)
   [
                     4     3      2
     [complexRoots= ?  + 5?  + 16?  + 30? + 57,

       coordinates =
                     3       2
         [151x + 15%A  + 54%A  + 104%A + 93,
                     3       2
          151y - 10%A  - 36%A  - 19%A - 62,
                    3       2
          151z - 5%A  - 18%A  - 85%A - 31,
                    3       2
          151t - 5%A  - 18%A  - 85%A - 31]
       ]
     ,

                     4    3     2
     [complexRoots= ?  - ?  - 2?  + 3,

       coordinates =
                3                  3
         [x - %A  + 2%A + 1, y + %A  - %A - 1, z - %A,
                3
          t + %A  - %A - 1]
       ]
     ,

                     4     3     2
     [complexRoots= ?  + 2?  - 8?  + 48,

       coordinates =
                 3
         [8x - %A  + 4%A - 8, 2y + %A,
                 3                   3
          8z + %A  - 8%A + 8, 8t - %A  + 4%A - 8]
       ]
     ]
Type: List Record(complexRoots: SparseUnivariatePolynomial Integer,coordinates: List Polynomial Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty23}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty23}{ZeroDimensionalSolvePackageXmpPagePatch23}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty23}{\showpaste}
\tab{5}\spadcommand{univariateSolve(ts)$pack\free{ts }\free{pack }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch24}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull24}{ZeroDimensionalSolvePackageXmpPageEmpty24}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull24}{\hidepaste}
\tab{5}\spadcommand{realSolve(ts)$pack\free{ts }\free{pack }}
\indentrel{3}\begin{verbatim}
   (24)  []
           Type: List List RealClosure Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty24}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty24}{ZeroDimensionalSolvePackageXmpPagePatch24}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty24}{\showpaste}
\tab{5}\spadcommand{realSolve(ts)$pack\free{ts }\free{pack }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch25}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull25}{ZeroDimensionalSolvePackageXmpPageEmpty25}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull25}{\hidepaste}
\tab{5}\spadcommand{lr2 := realSolve(lf)$pack\free{lf }\free{pack }\bound{lr2 }}
\indentrel{3}\begin{verbatim}
   (25)
   [[0,- 1,1,1], [0,0,1,0], [1,0,0,0], [0,0,0,1],
    [0,1,0,0], [1,0,%R37,- %R37], [1,0,%R38,- %R38],
    [0,1,%R35,- %R35], [0,1,%R36,- %R36], [- 1,0,1,1],

     [%R32,

          1     15    2     14    1     13    4     12
         �� %R32   + �� %R32   + �� %R32   - �� %R32
         27          27          27          27
       + 
           11     11    4     10    1     9   14     8
         - �� %R32   - �� %R32   + �� %R32  + �� %R32
           27          27          27         27
       + 
          1     7   2     6   1     5   2     4       3
         �� %R32  + � %R32  + � %R32  + � %R32  + %R32
         27         9         3         9
       + 
         4     2
         � %R32  - %R32 - 2
         3
       ,

            1     15    1     14    1     13    2     12
         - �� %R32   - �� %R32   - �� %R32   + �� %R32
           54          27          54          27
       + 
         11     11    2     10    1     9    7     8
         �� %R32   + �� %R32   - �� %R32  - �� %R32
         54          27          54         27
       + 
            1     7   1     6   1     5   1     4       3
         - �� %R32  - � %R32  - � %R32  - � %R32  - %R32
           54         9         6         9
       + 
           2     2   1        3
         - � %R32  + � %R32 + �
           3         2        2
       ,

            1     15    1     14    1     13    2     12
         - �� %R32   - �� %R32   - �� %R32   + �� %R32
           54          27          54          27
       + 
         11     11    2     10    1     9    7     8
         �� %R32   + �� %R32   - �� %R32  - �� %R32
         54          27          54         27
       + 
            1     7   1     6   1     5   1     4       3
         - �� %R32  - � %R32  - � %R32  - � %R32  - %R32
           54         9         6         9
       + 
           2     2   1        3
         - � %R32  + � %R32 + �
           3         2        2
       ]
     ,

     [%R33,

          1     15    2     14    1     13    4     12
         �� %R33   + �� %R33   + �� %R33   - �� %R33
         27          27          27          27
       + 
           11     11    4     10    1     9   14     8
         - �� %R33   - �� %R33   + �� %R33  + �� %R33
           27          27          27         27
       + 
          1     7   2     6   1     5   2     4       3
         �� %R33  + � %R33  + � %R33  + � %R33  + %R33
         27         9         3         9
       + 
         4     2
         � %R33  - %R33 - 2
         3
       ,

            1     15    1     14    1     13    2     12
         - �� %R33   - �� %R33   - �� %R33   + �� %R33
           54          27          54          27
       + 
         11     11    2     10    1     9    7     8
         �� %R33   + �� %R33   - �� %R33  - �� %R33
         54          27          54         27
       + 
            1     7   1     6   1     5   1     4       3
         - �� %R33  - � %R33  - � %R33  - � %R33  - %R33
           54         9         6         9
       + 
           2     2   1        3
         - � %R33  + � %R33 + �
           3         2        2
       ,

            1     15    1     14    1     13    2     12
         - �� %R33   - �� %R33   - �� %R33   + �� %R33
           54          27          54          27
       + 
         11     11    2     10    1     9    7     8
         �� %R33   + �� %R33   - �� %R33  - �� %R33
         54          27          54         27
       + 
            1     7   1     6   1     5   1     4       3
         - �� %R33  - � %R33  - � %R33  - � %R33  - %R33
           54         9         6         9
       + 
           2     2   1        3
         - � %R33  + � %R33 + �
           3         2        2
       ]
     ,

     [%R34,

          1     15    2     14    1     13    4     12
         �� %R34   + �� %R34   + �� %R34   - �� %R34
         27          27          27          27
       + 
           11     11    4     10    1     9   14     8
         - �� %R34   - �� %R34   + �� %R34  + �� %R34
           27          27          27         27
       + 
          1     7   2     6   1     5   2     4       3
         �� %R34  + � %R34  + � %R34  + � %R34  + %R34
         27         9         3         9
       + 
         4     2
         � %R34  - %R34 - 2
         3
       ,

            1     15    1     14    1     13    2     12
         - �� %R34   - �� %R34   - �� %R34   + �� %R34
           54          27          54          27
       + 
         11     11    2     10    1     9    7     8
         �� %R34   + �� %R34   - �� %R34  - �� %R34
         54          27          54         27
       + 
            1     7   1     6   1     5   1     4       3
         - �� %R34  - � %R34  - � %R34  - � %R34  - %R34
           54         9         6         9
       + 
           2     2   1        3
         - � %R34  + � %R34 + �
           3         2        2
       ,

            1     15    1     14    1     13    2     12
         - �� %R34   - �� %R34   - �� %R34   + �� %R34
           54          27          54          27
       + 
         11     11    2     10    1     9    7     8
         �� %R34   + �� %R34   - �� %R34  - �� %R34
         54          27          54         27
       + 
            1     7   1     6   1     5   1     4       3
         - �� %R34  - � %R34  - � %R34  - � %R34  - %R34
           54         9         6         9
       + 
           2     2   1        3
         - � %R34  + � %R34 + �
           3         2        2
       ]
     ,
    [- 1,1,0,1], [- 1,1,1,0],

     [%R23,

            1     15    1     14    1     13    2     12
         - �� %R23   - �� %R23   - �� %R23   + �� %R23
           54          27          54          27
       + 
         11     11    2     10    1     9    7     8
         �� %R23   + �� %R23   - �� %R23  - �� %R23
         54          27          54         27
       + 
            1     7   1     6   1     5   1     4       3
         - �� %R23  - � %R23  - � %R23  - � %R23  - %R23
           54         9         6         9
       + 
           2     2   1        3
         - � %R23  + � %R23 + �
           3         2        2
       ,
      %R30,

                   1     15    1     14    1     13
         - %R30 + �� %R23   + �� %R23   + �� %R23
                  54          27          54
       + 
            2     12   11     11    2     10    1     9
         - �� %R23   - �� %R23   - �� %R23   + �� %R23
           27          54          27          54
       + 
          7     8    1     7   1     6   1     5   1     4
         �� %R23  + �� %R23  + � %R23  + � %R23  + � %R23
         27         54         9         6         9
       + 
         2     2   1        1
         � %R23  - � %R23 - �
         3         2        2
       ]
     ,

     [%R23,

            1     15    1     14    1     13    2     12
         - �� %R23   - �� %R23   - �� %R23   + �� %R23
           54          27          54          27
       + 
         11     11    2     10    1     9    7     8
         �� %R23   + �� %R23   - �� %R23  - �� %R23
         54          27          54         27
       + 
            1     7   1     6   1     5   1     4       3
         - �� %R23  - � %R23  - � %R23  - � %R23  - %R23
           54         9         6         9
       + 
           2     2   1        3
         - � %R23  + � %R23 + �
           3         2        2
       ,
      %R31,

                   1     15    1     14    1     13
         - %R31 + �� %R23   + �� %R23   + �� %R23
                  54          27          54
       + 
            2     12   11     11    2     10    1     9
         - �� %R23   - �� %R23   - �� %R23   + �� %R23
           27          54          27          54
       + 
          7     8    1     7   1     6   1     5   1     4
         �� %R23  + �� %R23  + � %R23  + � %R23  + � %R23
         27         54         9         6         9
       + 
         2     2   1        1
         � %R23  - � %R23 - �
         3         2        2
       ]
     ,

     [%R24,

            1     15    1     14    1     13    2     12
         - �� %R24   - �� %R24   - �� %R24   + �� %R24
           54          27          54          27
       + 
         11     11    2     10    1     9    7     8
         �� %R24   + �� %R24   - �� %R24  - �� %R24
         54          27          54         27
       + 
            1     7   1     6   1     5   1     4       3
         - �� %R24  - � %R24  - � %R24  - � %R24  - %R24
           54         9         6         9
       + 
           2     2   1        3
         - � %R24  + � %R24 + �
           3         2        2
       ,
      %R28,

                   1     15    1     14    1     13
         - %R28 + �� %R24   + �� %R24   + �� %R24
                  54          27          54
       + 
            2     12   11     11    2     10    1     9
         - �� %R24   - �� %R24   - �� %R24   + �� %R24
           27          54          27          54
       + 
          7     8    1     7   1     6   1     5   1     4
         �� %R24  + �� %R24  + � %R24  + � %R24  + � %R24
         27         54         9         6         9
       + 
         2     2   1        1
         � %R24  - � %R24 - �
         3         2        2
       ]
     ,

     [%R24,

            1     15    1     14    1     13    2     12
         - �� %R24   - �� %R24   - �� %R24   + �� %R24
           54          27          54          27
       + 
         11     11    2     10    1     9    7     8
         �� %R24   + �� %R24   - �� %R24  - �� %R24
         54          27          54         27
       + 
            1     7   1     6   1     5   1     4       3
         - �� %R24  - � %R24  - � %R24  - � %R24  - %R24
           54         9         6         9
       + 
           2     2   1        3
         - � %R24  + � %R24 + �
           3         2        2
       ,
      %R29,

                   1     15    1     14    1     13
         - %R29 + �� %R24   + �� %R24   + �� %R24
                  54          27          54
       + 
            2     12   11     11    2     10    1     9
         - �� %R24   - �� %R24   - �� %R24   + �� %R24
           27          54          27          54
       + 
          7     8    1     7   1     6   1     5   1     4
         �� %R24  + �� %R24  + � %R24  + � %R24  + � %R24
         27         54         9         6         9
       + 
         2     2   1        1
         � %R24  - � %R24 - �
         3         2        2
       ]
     ,

     [%R25,

            1     15    1     14    1     13    2     12
         - �� %R25   - �� %R25   - �� %R25   + �� %R25
           54          27          54          27
       + 
         11     11    2     10    1     9    7     8
         �� %R25   + �� %R25   - �� %R25  - �� %R25
         54          27          54         27
       + 
            1     7   1     6   1     5   1     4       3
         - �� %R25  - � %R25  - � %R25  - � %R25  - %R25
           54         9         6         9
       + 
           2     2   1        3
         - � %R25  + � %R25 + �
           3         2        2
       ,
      %R26,

                   1     15    1     14    1     13
         - %R26 + �� %R25   + �� %R25   + �� %R25
                  54          27          54
       + 
            2     12   11     11    2     10    1     9
         - �� %R25   - �� %R25   - �� %R25   + �� %R25
           27          54          27          54
       + 
          7     8    1     7   1     6   1     5   1     4
         �� %R25  + �� %R25  + � %R25  + � %R25  + � %R25
         27         54         9         6         9
       + 
         2     2   1        1
         � %R25  - � %R25 - �
         3         2        2
       ]
     ,

     [%R25,

            1     15    1     14    1     13    2     12
         - �� %R25   - �� %R25   - �� %R25   + �� %R25
           54          27          54          27
       + 
         11     11    2     10    1     9    7     8
         �� %R25   + �� %R25   - �� %R25  - �� %R25
         54          27          54         27
       + 
            1     7   1     6   1     5   1     4       3
         - �� %R25  - � %R25  - � %R25  - � %R25  - %R25
           54         9         6         9
       + 
           2     2   1        3
         - � %R25  + � %R25 + �
           3         2        2
       ,
      %R27,

                   1     15    1     14    1     13
         - %R27 + �� %R25   + �� %R25   + �� %R25
                  54          27          54
       + 
            2     12   11     11    2     10    1     9
         - �� %R25   - �� %R25   - �� %R25   + �� %R25
           27          54          27          54
       + 
          7     8    1     7   1     6   1     5   1     4
         �� %R25  + �� %R25  + � %R25  + � %R25  + � %R25
         27         54         9         6         9
       + 
         2     2   1        1
         � %R25  - � %R25 - �
         3         2        2
       ]
     ,
    [1,%R21,- %R21,0], [1,%R22,- %R22,0],
    [1,%R19,0,- %R19], [1,%R20,0,- %R20],
            1     3   1   1     3   1   1     3   1
    [%R17,- � %R17  + �,- � %R17  + �,- � %R17  + �],
            3         3   3         3   3         3
            1     3   1   1     3   1   1     3   1
    [%R18,- � %R18  + �,- � %R18  + �,- � %R18  + �]]
            3         3   3         3   3         3
           Type: List List RealClosure Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty25}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty25}{ZeroDimensionalSolvePackageXmpPagePatch25}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty25}{\showpaste}
\tab{5}\spadcommand{lr2 := realSolve(lf)$pack\free{lf }\free{pack }\bound{lr2 }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch26}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull26}{ZeroDimensionalSolvePackageXmpPageEmpty26}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull26}{\hidepaste}
\tab{5}\spadcommand{\#lr2\free{lr2 }}
\indentrel{3}\begin{verbatim}
   (26)  27
                                  Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty26}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty26}{ZeroDimensionalSolvePackageXmpPagePatch26}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty26}{\showpaste}
\tab{5}\spadcommand{\#lr2\free{lr2 }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch27}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull27}{ZeroDimensionalSolvePackageXmpPageEmpty27}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull27}{\hidepaste}
\tab{5}\spadcommand{lpr2 := positiveSolve(lf)$pack\free{lf }\free{pack }\bound{lpr2 }}
\indentrel{3}\begin{verbatim}
   (27)
            1     3   1   1     3   1   1     3   1
   [[%R40,- � %R40  + �,- � %R40  + �,- � %R40  + �]]
            3         3   3         3   3         3
           Type: List List RealClosure Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty27}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty27}{ZeroDimensionalSolvePackageXmpPagePatch27}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty27}{\showpaste}
\tab{5}\spadcommand{lpr2 := positiveSolve(lf)$pack\free{lf }\free{pack }\bound{lpr2 }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPagePatch28}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageFull28}{ZeroDimensionalSolvePackageXmpPageEmpty28}
\pastebutton{ZeroDimensionalSolvePackageXmpPageFull28}{\hidepaste}
\tab{5}\spadcommand{[approximate(r,1/10**21)::Float for r in lpr2.1]\free{lpr2 }}
\indentrel{3}\begin{verbatim}
   (28)
   [0.3221853546 2608559291, 0.3221853546 2608559291,
    0.3221853546 2608559291, 0.3221853546 2608559291]
                                       Type: List Float
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimensionalSolvePackageXmpPageEmpty28}
\begin{paste}{ZeroDimensionalSolvePackageXmpPageEmpty28}{ZeroDimensionalSolvePackageXmpPagePatch28}
\pastebutton{ZeroDimensionalSolvePackageXmpPageEmpty28}{\showpaste}
\tab{5}\spadcommand{[approximate(r,1/10**21)::Float for r in lpr2.1]\free{lpr2 }}
\end{paste}\end{patch}