1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
% Copyright The Numerical Algorithms Group Limited 1992-94. All rights reserved.
% !! DO NOT MODIFY THIS FILE BY HAND !! Created by ht.awk.
\newcommand{\LiePolynomialXmpTitle}{LiePolynomial}
\newcommand{\LiePolynomialXmpNumber}{9.43}
%
% =====================================================================
\begin{page}{LiePolynomialXmpPage}{9.43 LiePolynomial}
% =====================================================================
\beginscroll
Declaration of domains
\xtc{
}{
\spadpaste{RN := Fraction Integer \bound{RN}}
}
\xtc{
}{
\spadpaste{Lpoly := LiePolynomial(Symbol,RN) \bound{Lpoly} \free{RN}}
}
\xtc{
}{
\spadpaste{Dpoly := XDPOLY(Symbol,RN) \bound{Dpoly} \free{RN}}
}
\xtc{
}{
\spadpaste{Lword := LyndonWord Symbol \bound{Lword}}
}
Initialisation
\xtc{
}{
\spadpaste{a:Symbol := 'a \bound{a}}
}
\xtc{
}{
\spadpaste{b:Symbol := 'b \bound{b}}
}
\xtc{
}{
\spadpaste{c:Symbol := 'c \bound{c}}
}
\xtc{
}{
\spadpaste{aa: Lpoly := a \bound{aa} \free{Lpoly} \free{a}}
}
\xtc{
}{
\spadpaste{bb: Lpoly := b \bound{bb} \free{Lpoly} \free{b}}
}
\xtc{
}{
\spadpaste{cc: Lpoly := c \bound{cc} \free{Lpoly} \free{c}}
}
\xtc{
}{
\spadpaste{p : Lpoly := [aa,bb] \bound{p} \free{aa} \free{bb} \free{Lpoly}}
}
\xtc{
}{
\spadpaste{q : Lpoly := [p,bb] \bound{q} \free{p} \free{bb} \free{Lpoly}}
}
\xtc{
All the Lyndon words of order 4
}{
\spadpaste{liste : List Lword := LyndonWordsList([a,b], 4) \free{a} \free{b} \free{Lword} \bound{liste}}
}
\xtc{
}{
\spadpaste{r: Lpoly := p + q + 3*LiePoly(liste.4)$Lpoly \bound{r} \free{Lpoly} \free{p} \free{q} \free{liste}}
}
\xtc{
}{
\spadpaste{s:Lpoly := [p,r] \bound{s} \free{Lpoly} \free{p} \free{r}}
}
\xtc{
}{
\spadpaste{t:Lpoly := s + 2*LiePoly(liste.3) - 5*LiePoly(liste.5) \bound{t} \free{Lpoly} \free{s} \free{liste} }
}
\xtc{
}{
\spadpaste{degree t \free{t}}
}
\xtc{
}{
\spadpaste{mirror t \free{t}}
}
Jacobi Relation
\xtc{
}{
\spadpaste{Jacobi(p: Lpoly, q: Lpoly, r: Lpoly): Lpoly == [[p,q]$Lpoly, r] + [[q,r]$Lpoly, p] + [[r,p]$Lpoly, q] \free{Lpoly} \bound{J}}
}
Tests
\xtc{
}{
\spadpaste{test: Lpoly := Jacobi(a,b,b) \free{J Lpoly a b} \bound{test1}}
}
\xtc{
}{
\spadpaste{test: Lpoly := Jacobi(p,q,r) \free{J p q r Lpoly} \bound{test2}}
}
\xtc{
}{
\spadpaste{test: Lpoly := Jacobi(r,s,t) \free{J r s t Lpoly} \bound{test3}}
}
Evaluation
\xtc{
}{
\spadpaste{eval(p, a, p)$Lpoly}
}
\xtc{
}{
\spadpaste{eval(p, [a,b], [2*bb, 3*aa])$Lpoly \free{p a b bb aa Lpoly}}
}
\xtc{
}{
\spadpaste{r: Lpoly := [p,c] \free{p c Lpoly} \bound{rr}}
}
\xtc{
}{
\spadpaste{r1: Lpoly := eval(r, [a,b,c], [bb, cc, aa])$Lpoly \free{rr a b c aa bb cc Lpoly} \bound{r1}}
}
\xtc{
}{
\spadpaste{r2: Lpoly := eval(r, [a,b,c], [cc, aa, bb])$Lpoly \free{rr a b c cc bb aa Lpoly} \bound{r2}}
}
\xtc{
}{
\spadpaste{r + r1 + r2 \free{rr r1 r2}}
}
\endscroll
\autobuttons
\end{page}
%
|