aboutsummaryrefslogtreecommitdiff
path: root/src/hyper/pages/INTHEORY.ht
blob: d96b703db80767ce0dff86eab27991671d9d4804 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
% Copyright The Numerical Algorithms Group Limited 1992-94. All rights reserved.
% !! DO NOT MODIFY THIS FILE BY HAND !! Created by ht.awk.
\newcommand{\IntegerNumberTheoryFunctionsXmpTitle}{IntegerNumberTheoryFunctions}
\newcommand{\IntegerNumberTheoryFunctionsXmpNumber}{9.36}
%
% =====================================================================
\begin{page}{IntegerNumberTheoryFunctionsXmpPage}{9.36 IntegerNumberTheoryFunctions}
% =====================================================================
\beginscroll


The \spadtype{IntegerNumberTheoryFunctions} package contains a variety of
operations of interest to number theorists.
%-% \HDindex{number theory}{IntegerNumberTheoryFunctionsXmpPage}{9.36}{IntegerNumberTheoryFunctions}
Many of these operations deal with divisibility properties of integers.
(Recall that an integer \spad{a} divides an integer \spad{b} if there is
an integer \spad{c} such that \spad{b = a * c}.)

\xtc{
The operation \spadfunFrom{divisors}{IntegerNumberTheoryFunctions}
returns a list of the divisors of an integer.
}{
\spadpaste{div144 := divisors(144) \bound{div144}}
}
\xtc{
You can now compute the number of divisors of \spad{144} and the sum of
the divisors of \spad{144} by counting and summing the elements of the
list we just created.
}{
\spadpaste{\#(div144) \free{div144}}
}
\xtc{
}{
\spadpaste{reduce(+,div144) \free{div144}}
}

Of course, you can compute the number of divisors of an integer \spad{n},
usually denoted \spad{d(n)}, and the sum of the divisors of an integer
\spad{n}, usually denoted \spad{\texht{$\sigma$}{sigma}(n)},
%-% \HDindex{sigma@{$\sigma$}}{IntegerNumberTheoryFunctionsXmpPage}{9.36}{IntegerNumberTheoryFunctions}
without ever listing the divisors of \spad{n}.

\xtc{
In \Language{}, you can simply call the operations
\spadfunFrom{numberOfDivisors}{IntegerNumberTheoryFunctions} and
\spadfunFrom{sumOfDivisors}{IntegerNumberTheoryFunctions}.
}{
\spadpaste{numberOfDivisors(144)}
}
\xtc{
}{
\spadpaste{sumOfDivisors(144)}
}

The key is that \spad{d(n)} and
\spad{\texht{$\sigma$}{sigma}(n)}
are ``multiplicative functions.''
This means that when \spad{n} and \spad{m} are relatively prime, that is, when
\spad{n} and \spad{m} have no prime factor in common, then
\spad{d(nm) = d(n) d(m)} and
\spad{\texht{$\sigma$}{sigma}(nm) = \texht{$\sigma$}{sigma}(n)
\texht{$\sigma$}{sigma}(m)}.
Note that these functions are trivial to compute when \spad{n} is a prime
power and are computed for general \spad{n} from the prime factorization
of \spad{n}.
Other examples of multiplicative functions are
\spad{\texht{$\sigma_k$}{sigma_k}(n)}, the sum of the \eth{\spad{k}} powers of
the divisors of \spad{n} and \texht{$\varphi(n)$}{\spad{phi(n)}}, the
number of integers between 1 and \spad{n} which are prime to \spad{n}.
The corresponding \Language{} operations are called
\spadfunFrom{sumOfKthPowerDivisors}{IntegerNumberTheoryFunctions} and
\spadfunFrom{eulerPhi}{IntegerNumberTheoryFunctions}.
%-% \HDindex{phi@{$\varphi$}}{IntegerNumberTheoryFunctionsXmpPage}{9.36}{IntegerNumberTheoryFunctions}
%-% \HDindex{Euler!phi function@{$\varphi$ function}}{IntegerNumberTheoryFunctionsXmpPage}{9.36}{IntegerNumberTheoryFunctions}

An interesting function is \spad{\texht{$\mu$}{mu}(n)},
%-% \HDindex{mu@{$\mu$}}{IntegerNumberTheoryFunctionsXmpPage}{9.36}{IntegerNumberTheoryFunctions}
the \texht{M\"{o}bius $\mu$}{Moebius mu} function, defined
%-% \HDindex{Moebius@{M\"{o}bius}!mu function@{$\mu$ function}}{IntegerNumberTheoryFunctionsXmpPage}{9.36}{IntegerNumberTheoryFunctions}
as follows:
\spad{\texht{$\mu$}{mu}(1) = 1}, \spad{\texht{$\mu$}{mu}(n) = 0},
when \spad{n} is divisible by a
square, and
\spad{\texht{$\mu = {(-1)}^k$}{mu(n) = (-1) ** k}}, when \spad{n}
is the product of \spad{k} distinct primes.
The corresponding \Language{} operation is
\spadfunFrom{moebiusMu}{IntegerNumberTheoryFunctions}.
This function occurs in the following theorem:

\noindent
{\bf Theorem} (\texht{M\"{o}bius}{Moebius} Inversion Formula): \newline
%\texht{\begin{quotation}\noindent}{\newline\indent{5}}
Let \spad{f(n)} be a function on the positive integers and let \spad{F(n)}
be defined by
\texht{\narrowDisplay{F(n) = \sum_{d \mid n} f(n)}}{\spad{F(n) =}
sum of \spad{f(n)} over \spad{d | n}}
where the sum is taken over the positive divisors of \spad{n}.
Then the values of \spad{f(n)} can be recovered from the values of
\spad{F(n)}:
\texht{\narrowDisplay{f(n) = \sum_{d \mid n} \mu(n) F({{n}\over {d}})}}{\spad{f(n) =}
sum of \spad{mu(n) F(n/d)} over \spad{d | n},}
where again the sum is taken over the positive divisors of \spad{n}.

\xtc{
When \spad{f(n) = 1}, then \spad{F(n) = d(n)}.
Thus, if you sum \spad{\texht{$\mu$}{mu}(d) \texht{$\cdot$}{*} d(n/d)}
over the positive divisors
\spad{d} of \spad{n}, you should always get \spad{1}.
}{
\spadpaste{f1(n) == reduce(+,[moebiusMu(d) * numberOfDivisors(quo(n,d)) for d in divisors(n)]) \bound{f1}}
}
\xtc{
}{
\spadpaste{f1(200) \free{f1}}
}
\xtc{
}{
\spadpaste{f1(846) \free{f1}}
}
\xtc{
Similarly, when \spad{f(n) = n}, then \spad{F(n) = \texht{$\sigma$}{sigma}(n)}.
Thus, if you sum \spad{\texht{$\mu$}{mu}(d) \texht{$\cdot$}{*}
\texht{$\sigma$}{sigma}(n/d)} over the positive divisors
\spad{d} of \spad{n}, you should always get \spad{n}.
}{
\spadpaste{f2(n) == reduce(+,[moebiusMu(d) * sumOfDivisors(quo(n,d)) for d in divisors(n)]) \bound{f2}}
}
\xtc{
}{
\spadpaste{f2(200) \free{f2}}
}
\xtc{
}{
\spadpaste{f2(846) \free{f2}}
}


The Fibonacci numbers are defined by \spad{F(1) = F(2) = 1} and
%-% \HDindex{Fibonacci numbers}{IntegerNumberTheoryFunctionsXmpPage}{9.36}{IntegerNumberTheoryFunctions}
\spad{F(n) = F(n-1) + F(n-2)} for \spad{n = 3,4, ...}.
\xtc{
The operation \spadfunFrom{fibonacci}{IntegerNumberTheoryFunctions}
computes the \eth{\spad{n}} Fibonacci number.
}{
\spadpaste{fibonacci(25)}
}
\xtc{
}{
\spadpaste{[fibonacci(n) for n in 1..15]}
}
\xtc{
Fibonacci numbers can also be expressed as sums of binomial coefficients.
}{
\spadpaste{fib(n) == reduce(+,[binomial(n-1-k,k) for k in 0..quo(n-1,2)]) \bound{fib}}
}
\xtc{
}{
\spadpaste{fib(25) \free{fib}}
}
\xtc{
}{
\spadpaste{[fib(n) for n in 1..15] \free{fib}}
}

Quadratic symbols can be computed with the operations
\spadfunFrom{legendre}{IntegerNumberTheoryFunctions} and
\spadfunFrom{jacobi}{IntegerNumberTheoryFunctions}.
The Legendre symbol
%-% \HDindex{Legendre!symbol}{IntegerNumberTheoryFunctionsXmpPage}{9.36}{IntegerNumberTheoryFunctions}
\texht{$\left({a \over p}\right)$}{\spad{(a/p)}}
is defined for integers \spad{a} and
\spad{p} with \spad{p} an odd prime number.
By definition, \texht{$\left({a \over p}\right)$}{\spad{(a/p) = +1}},
when \spad{a} is a square \spad{(mod p)},
\texht{$\left({a \over p}\right)$}{\spad{(a/p) = -1}},
when \spad{a} is not a square \spad{(mod p)}, and
\texht{$\left({a \over p}\right)$}{\spad{(a/p) = 0}},
when \spad{a} is divisible by \spad{p}.
\xtc{
You compute \texht{$\left({a \over p}\right)$}{\spad{(a/p)}}
via the command \spad{legendre(a,p)}.
}{
\spadpaste{legendre(3,5)}
}
\xtc{
}{
\spadpaste{legendre(23,691)}
}
The Jacobi symbol \texht{$\left({a \over n}\right)$}{\spad{(a/n)}}
is the usual extension of the Legendre
symbol, where \spad{n} is an arbitrary integer.
The most important property of the Jacobi symbol is the following:
if \spad{K} is a quadratic field with discriminant \spad{d} and quadratic
character \texht{$\chi$}{\spad{chi}},
then \texht{$\chi$}{\spad{chi}}\spad{(n) = (d/n)}.
Thus, you can use the Jacobi symbol
%-% \HDindex{Jacobi symbol}{IntegerNumberTheoryFunctionsXmpPage}{9.36}{IntegerNumberTheoryFunctions}
to compute, say, the class numbers of
%-% \HDindex{class number}{IntegerNumberTheoryFunctionsXmpPage}{9.36}{IntegerNumberTheoryFunctions}
imaginary quadratic fields from a standard class number formula.
%-% \HDindex{field!imaginary quadratic}{IntegerNumberTheoryFunctionsXmpPage}{9.36}{IntegerNumberTheoryFunctions}
\xtc{
This function computes the class number of the imaginary
quadratic field with discriminant \spad{d}.
}{
\spadpaste{h(d) == quo(reduce(+, [jacobi(d,k) for k in 1..quo(-d, 2)]), 2 - jacobi(d,2)) \bound{h}}
}
\xtc{
}{
\spadpaste{h(-163) \free{h}}   
}
\xtc{
}{
\spadpaste{h(-499) \free{h}}   
}
\xtc{
}{
\spadpaste{h(-1832) \free{h}}  
}



\endscroll
\autobuttons
\end{page}
%