1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
|
% Copyright The Numerical Algorithms Group Limited 1992-94. All rights reserved.
% !! DO NOT MODIFY THIS FILE BY HAND !! Created by ht.awk.
\newcommand{\FactoredXmpTitle}{Factored}
\newcommand{\FactoredXmpNumber}{9.22}
%
% =====================================================================
\begin{page}{FactoredXmpPage}{9.22 Factored}
% =====================================================================
\beginscroll
\spadtype{Factored} creates a domain whose objects are kept in factored
%-% \HDindex{factorization}{FactoredXmpPage}{9.22}{Factored}
form as long as possible.
Thus certain operations like \spadopFrom{*}{Factored}
(multiplication) and \spadfunFrom{gcd}{Factored} are relatively
easy to do.
Others, such as addition, require somewhat more work, and
the result may not be completely factored
unless the argument domain \spad{R} provides a
\spadfunFrom{factor}{Factored} operation.
Each object consists of a unit and a list of factors, where each
factor consists of a member of \spad{R} (the {\em base}), an
exponent, and a flag indicating what is known about the base.
A flag may be one of \spad{"nil"}, \spad{"sqfr"}, \spad{"irred"}
or \spad{"prime"}, which mean that nothing is known about the
base, it is square-free, it is irreducible, or it is prime,
respectively.
The current restriction to factored objects of integral domains
allows simplification to be performed without worrying about
multiplication order.
\beginmenu
\menudownlink{{9.22.1. Decomposing Factored Objects}}{ugxFactoredDecompPage}
\menudownlink{{9.22.2. Expanding Factored Objects}}{ugxFactoredExpandPage}
\menudownlink{{9.22.3. Arithmetic with Factored Objects}}{ugxFactoredArithPage}
\menudownlink{{9.22.4. Creating New Factored Objects}}{ugxFactoredNewPage}
\menudownlink{{9.22.5. Factored Objects with Variables}}{ugxFactoredVarPage}
\endmenu
\endscroll
\autobuttons
\end{page}
%
%
\newcommand{\ugxFactoredDecompTitle}{Decomposing Factored Objects}
\newcommand{\ugxFactoredDecompNumber}{9.22.1.}
%
% =====================================================================
\begin{page}{ugxFactoredDecompPage}{9.22.1. Decomposing Factored Objects}
% =====================================================================
\beginscroll
\labelSpace{4pc}
\xtc{
In this section we will work with a factored integer.
}{
\spadpaste{g := factor(4312) \bound{g}}
}
\xtc{
Let's begin by decomposing \spad{g} into pieces.
The only possible units for integers are \spad{1} and \spad{-1}.
}{
\spadpaste{unit(g) \free{g}}
}
\xtc{
There are three factors.
}{
\spadpaste{numberOfFactors(g) \free{g}}
}
\xtc{
We can make a list of the bases, \ldots
}{
\spadpaste{[nthFactor(g,i) for i in 1..numberOfFactors(g)] \free{g}}
}
\xtc{
and the exponents, \ldots
}{
\spadpaste{[nthExponent(g,i) for i in 1..numberOfFactors(g)] \free{g}}
}
\xtc{
and the flags.
You can see that all the bases (factors) are prime.
}{
\spadpaste{[nthFlag(g,i) for i in 1..numberOfFactors(g)] \free{g}}
}
\xtc{
A useful operation for pulling apart a factored object into a list
of records of the components is \spadfunFrom{factorList}{Factored}.
}{
\spadpaste{factorList(g) \free{g}}
}
\xtc{
If you don't care about the flags, use \spadfunFrom{factors}{Factored}.
}{
\spadpaste{factors(g) \free{g}\bound{prev1}}
}
\xtc{
Neither of these operations returns the unit.
}{
\spadpaste{first(\%).factor \free{prev1}}
}
\endscroll
\autobuttons
\end{page}
%
%
\newcommand{\ugxFactoredExpandTitle}{Expanding Factored Objects}
\newcommand{\ugxFactoredExpandNumber}{9.22.2.}
%
% =====================================================================
\begin{page}{ugxFactoredExpandPage}{9.22.2. Expanding Factored Objects}
% =====================================================================
\beginscroll
\labelSpace{4pc}
\xtc{
Recall that we are working with this factored integer.
}{
\spadpaste{g := factor(4312) \bound{g}}
}
\xtc{
To multiply out the factors with their multiplicities, use
\spadfunFrom{expand}{Factored}.
}{
\spadpaste{expand(g) \free{g}}
}
\xtc{
If you would like, say, the distinct factors multiplied together
but with multiplicity one, you could do it this way.
}{
\spadpaste{reduce(*,[t.factor for t in factors(g)]) \free{g}}
}
\endscroll
\autobuttons
\end{page}
%
%
\newcommand{\ugxFactoredArithTitle}{Arithmetic with Factored Objects}
\newcommand{\ugxFactoredArithNumber}{9.22.3.}
%
% =====================================================================
\begin{page}{ugxFactoredArithPage}{9.22.3. Arithmetic with Factored Objects}
% =====================================================================
\beginscroll
\labelSpace{4pc}
\xtc{
We're still working with this factored integer.
}{
\spadpaste{g := factor(4312) \bound{g}}
}
\xtc{
We'll also define this factored integer.
}{
\spadpaste{f := factor(246960) \bound{f}}
}
\xtc{
Operations involving multiplication and division are particularly
easy with factored objects.
}{
\spadpaste{f * g \free{f g}}
}
\xtc{
}{
\spadpaste{f**500 \free{f}}
}
\xtc{
}{
\spadpaste{gcd(f,g) \free{f g}}
}
\xtc{
}{
\spadpaste{lcm(f,g) \free{f g}}
}
\xtc{
If we use addition and subtraction things can slow down because
we may need to compute greatest common divisors.
}{
\spadpaste{f + g \free{f g}}
}
\xtc{
}{
\spadpaste{f - g \free{f g}}
}
\xtc{
Test for equality with \spad{0} and \spad{1} by using
\spadfunFrom{zero?}{Factored} and \spadfunFrom{one?}{Factored},
respectively.
}{
\spadpaste{zero?(factor(0))}
}
\xtc{
}{
\spadpaste{zero?(g) \free{g}}
}
\xtc{
}{
\spadpaste{one?(factor(1))}
}
\xtc{
}{
\spadpaste{one?(f) \free{f}}
}
\xtc{
Another way to get the zero and one factored objects is to use
package calling (see \downlink{``\ugTypesPkgCallTitle''}{ugTypesPkgCallPage} in Section \ugTypesPkgCallNumber\ignore{ugTypesPkgCall}).
}{
\spadpaste{0\$Factored(Integer)}
}
\xtc{
}{
\spadpaste{1\$Factored(Integer)}
}
\endscroll
\autobuttons
\end{page}
%
%
\newcommand{\ugxFactoredNewTitle}{Creating New Factored Objects}
\newcommand{\ugxFactoredNewNumber}{9.22.4.}
%
% =====================================================================
\begin{page}{ugxFactoredNewPage}{9.22.4. Creating New Factored Objects}
% =====================================================================
\beginscroll
The \spadfunFrom{map}{Factored} operation is used to iterate across the
unit and bases of a factored object.
See \downlink{`FactoredFunctions2'}{FactoredFunctionsTwoXmpPage}\ignore{FactoredFunctions2} for a discussion of
\spadfunFrom{map}{Factored}.
\labelSpace{1pc}
\xtc{
The following four operations take a base and an exponent and create
a factored object.
They differ in handling the flag component.
}{
\spadpaste{nilFactor(24,2) \bound{prev2}}
}
\xtc{
This factor has no associated information.
}{
\spadpaste{nthFlag(\%,1) \free{prev2}}
}
\xtc{
This factor is asserted to be square-free.
}{
\spadpaste{sqfrFactor(30,2) \bound{prev3}}
}
\xtc{
This factor is asserted to be irreducible.
}{
\spadpaste{irreducibleFactor(13,10) \bound{prev4}}
}
\xtc{
This factor is asserted to be prime.
}{
\spadpaste{primeFactor(11,5) \bound{prev5}}
}
\xtc{
A partial inverse to \spadfunFrom{factorList}{Factored} is
\spadfunFrom{makeFR}{Factored}.
}{
\spadpaste{h := factor(-720) \bound{h}}
}
\xtc{
The first argument is the unit and the second is a list of records as
returned by \spadfunFrom{factorList}{Factored}.
}{
\spadpaste{h - makeFR(unit(h),factorList(h)) \free{h}}
}
\endscroll
\autobuttons
\end{page}
%
%
\newcommand{\ugxFactoredVarTitle}{Factored Objects with Variables}
\newcommand{\ugxFactoredVarNumber}{9.22.5.}
%
% =====================================================================
\begin{page}{ugxFactoredVarPage}{9.22.5. Factored Objects with Variables}
% =====================================================================
\beginscroll
\labelSpace{4pc}
\xtc{
Some of the operations available for polynomials are also available
for factored polynomials.
}{
\spadpaste{p := (4*x*x-12*x+9)*y*y + (4*x*x-12*x+9)*y + 28*x*x - 84*x + 63 \bound{p}}
}
\xtc{
}{
\spadpaste{fp := factor(p) \free{p}\bound{fp}}
}
\xtc{
You can differentiate with respect to a variable.
}{
\spadpaste{D(p,x) \free{p}}
}
\xtc{
}{
\spadpaste{D(fp,x) \free{fp}\bound{prev1}}
}
\xtc{
}{
\spadpaste{numberOfFactors(\%) \free{prev1}}
}
\endscroll
\autobuttons
\end{page}
%
|