aboutsummaryrefslogtreecommitdiff
path: root/src/hyper/pages/CYCLES.ht
blob: 4d8a63a1e18b0ba89ca5d929fd125559a8309f02 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
% Copyright The Numerical Algorithms Group Limited 1992-94. All rights reserved.
% !! DO NOT MODIFY THIS FILE BY HAND !! Created by ht.awk.
\newcommand{\CycleIndicatorsXmpTitle}{CycleIndicators}
\newcommand{\CycleIndicatorsXmpNumber}{9.13}
%
% =====================================================================
\begin{page}{CycleIndicatorsXmpPage}{9.13 CycleIndicators}
% =====================================================================
\beginscroll
This section is based upon the paper
J. H. Redfield, ``The Theory of Group-Reduced Distributions'',
%-% \HDindex{Redfield, J. H.}{CycleIndicatorsXmpPage}{9.13}{CycleIndicators}
American J. Math.,49 (1927) 433-455,
and is an application of group theory to enumeration problems.
It is a development of the work by P. A. MacMahon on the
%-% \HDindex{MacMahon, P. A.}{CycleIndicatorsXmpPage}{9.13}{CycleIndicators}
application of symmetric functions and Hammond operators to
%-% \HDindex{function!symmetric}{CycleIndicatorsXmpPage}{9.13}{CycleIndicators}
combinatorial theory.
%-% \HDindex{operator!Hammond}{CycleIndicatorsXmpPage}{9.13}{CycleIndicators}
%-% \HDindex{combinatorics}{CycleIndicatorsXmpPage}{9.13}{CycleIndicators}

The theory is based upon the power sum symmetric functions
\subscriptIt{s}{i}
which are the sum of the \eth{\it i} powers of the variables.
The cycle index of a permutation is an expression that specifies
the sizes of the cycles of a permutation, and
may be represented as a partition.
A partition of a non-negative integer \spad{n} is a collection
of positive integers called its parts whose sum is \spad{n}.
%-% \HDindex{cycle index}{CycleIndicatorsXmpPage}{9.13}{CycleIndicators}
For example, the partition
%-% \HDindex{partition}{CycleIndicatorsXmpPage}{9.13}{CycleIndicators}
\texht{$(3^2 \  2 \ 1^2)$}{\spad{3**2 2 1**2)}}
will be used to represent
\texht{$s^2_3 s_2 s^2_1$}{\spad{(s_3)**2 s_2 (s_1)**2}}
and will indicate that the permutation has two cycles of length 3,
%-% \HDindex{permutation}{CycleIndicatorsXmpPage}{9.13}{CycleIndicators}
one of length 2 and two of length 1.
The cycle index of a permutation group is the sum of the cycle indices
of its permutations divided by the number of permutations.
The cycle indices of certain groups are provided.
\xtc{
We first expose something from the library.
}{
\spadpaste{)expose EVALCYC}
}
\xtc{
The operation \spadfun{complete} returns the cycle index of the
%-% \HDindex{group!symmetric}{CycleIndicatorsXmpPage}{9.13}{CycleIndicators}
symmetric group of order \spad{n} for argument \spad{n}.
Alternatively, it is the \eth{\spad{n}} complete homogeneous symmetric
function expressed in terms of power sum symmetric functions.
}{
\spadpaste{complete 1}
}
\xtc{
}{
\spadpaste{complete 2}
}
\xtc{
}{
\spadpaste{complete 3}
}
\xtc{
}{
\spadpaste{complete 7}
}
\xtc{
The operation \spadfun{elementary} computes the \eth{\spad{n}}
elementary symmetric function for argument \spad{n.}
}{
\spadpaste{elementary 7}
}
\xtc{
The operation \spadfun{alternating} returns
%-% \HDindex{group!alternating}{CycleIndicatorsXmpPage}{9.13}{CycleIndicators}
the cycle index of the alternating group
having an even number of even parts in each cycle partition.
}{
\spadpaste{alternating 7}
}
\xtc{
The operation \spadfun{cyclic} returns the cycle index of the cyclic group.
%-% \HDindex{group!cyclic}{CycleIndicatorsXmpPage}{9.13}{CycleIndicators}
}{
\spadpaste{cyclic 7}
}
\xtc{
The operation \spadfun{dihedral} is the cycle index of the
%-% \HDindex{group!dihedral}{CycleIndicatorsXmpPage}{9.13}{CycleIndicators}
dihedral group.
}{
\spadpaste{dihedral 7}
}
\xtc{
The operation \spadfun{graphs} for argument \spad{n} returns
the cycle index of the group of permutations on
the edges of the complete graph with \spad{n} nodes induced by
%-% \HDindex{graph}{CycleIndicatorsXmpPage}{9.13}{CycleIndicators}
applying the symmetric group to the nodes.
}{
\spadpaste{graphs 5}
}

The cycle index of a direct product of two groups is the product
of the cycle indices of the groups.
Redfield provided two operations on two cycle indices which will
be called ``cup'' and ``cap'' here.
The \spadfun{cup} of two cycle indices is a kind of scalar product
that combines monomials for permutations with the same cycles.
The \spadfun{cap} operation provides the sum of the coefficients
of the result of the \spadfun{cup} operation which will be an
integer that enumerates what Redfield called
group-reduced distributions.

We can, for example, represent  \spad{complete 2 * complete 2}
as the set of objects \spad{a a b b} and
\spad{complete 2 * complete 1 * complete 1} as \spad{c c d e.}

\xtc{
This integer
is the number of different sets of four pairs.
}{
\spadpaste{cap(complete 2**2, complete 2*complete 1**2)}
}
For example,
\begin{verbatim}
a a b b     a a b b    a a b b   a a b b
c c d e     c d c e    c e c d   d e c c
\end{verbatim}

\xtc{
This integer
is the number of different sets of four pairs no two pairs being equal.
}{
\spadpaste{cap(elementary 2**2, complete 2*complete 1**2)}
}
For example,
\begin{verbatim}
a a b b    a a b b
c d c e    c e c d
\end{verbatim}
In this case the configurations enumerated are easily constructed,
however the theory merely enumerates them providing little help in
actually constructing them.
\xtc{
Here are the
number of 6-pairs, first from \spad{a a a b b c,} second from
\spad{d d e e f g.}
}{
\spadpaste{cap(complete 3*complete 2*complete 1,complete 2**2*complete 1**2)}
}
\xtc{
Here it is again, but with no equal pairs.
}{
\spadpaste{cap(elementary 3*elementary 2*elementary 1,complete 2**2*complete 1**2)}
}
\xtc{
}{
\spadpaste{cap(complete 3*complete 2*complete 1,elementary 2**2*elementary 1**2)}
}
\xtc{
The number of 6-triples, first from \spad{a a a b b c,} second from
\spad{d d e e f g,} third from \spad{h h i i j j.}
}{
\spadpaste{eval(cup(complete 3*complete 2*complete 1, cup(complete 2**2*complete 1**2,complete 2**3)))}
}
\xtc{
The cycle index of vertices of a square is dihedral 4.
}{
\spadpaste{square:=dihedral 4}
}
\xtc{
The number of different squares with 2 red vertices and 2 blue vertices.
}{
\spadpaste{cap(complete 2**2,square)}
}
\xtc{
The number of necklaces with 3 red beads, 2 blue beads and 2 green beads.
}{
\spadpaste{cap(complete 3*complete 2**2,dihedral 7)}
}
\xtc{
The number of graphs with 5 nodes and 7 edges.
}{
\spadpaste{cap(graphs 5,complete 7*complete 3)}
}
\xtc{
The cycle index of rotations of vertices of a cube.
}{
\spadpaste{s(x) == powerSum(x)}
}
\xtc{
}{
\spadpaste{cube:=(1/24)*(s 1**8+9*s 2**4 + 8*s 3**2*s 1**2+6*s 4**2)}
}
\xtc{
The number of cubes with 4 red vertices and 4 blue vertices.
}{
\spadpaste{cap(complete 4**2,cube)}
}
\xtc{
The number of labeled graphs with degree sequence \spad{2 2 2 1 1}
with no loops or multiple edges.
}{
\spadpaste{cap(complete 2**3*complete 1**2,wreath(elementary 4,elementary 2))}
}
\xtc{
Again, but
with loops allowed but not multiple edges.
}{
\spadpaste{cap(complete 2**3*complete 1**2,wreath(elementary 4,complete 2))}
}
\xtc{
Again, but
with multiple edges allowed, but not loops
}{
\spadpaste{cap(complete 2**3*complete 1**2,wreath(complete 4,elementary 2))}
}
\xtc{
Again, but
with both multiple edges and loops allowed
}{
\spadpaste{cap(complete 2**3*complete 1**2,wreath(complete 4,complete 2))}
}

Having constructed a cycle index for a configuration
we are at liberty to evaluate the
\subscriptIt{s}{i}
components any way we please.
For example we can produce enumerating generating functions.
%-% \HDindex{function!enumerating generating}{CycleIndicatorsXmpPage}{9.13}{CycleIndicators}
This is done by providing a function \spad{f} on an integer \spad{i} to the
value required of \subscriptIt{s}{i},
and then evaluating \spad{eval(f, cycleindex)}.
\xtc{
}{
\spadpaste{x: ULS(FRAC INT,'x,0) := 'x \bound{x}}
}
\xtc{
}{
\spadpaste{ZeroOrOne: INT -> ULS(FRAC INT, 'x, 0) \bound{zodec}}
}
\xtc{
}{
\spadpaste{Integers: INT -> ULS(FRAC INT, 'x, 0) \bound{idec}}
}
\xtc{
For the integers 0 and 1, or two colors.
}{
\spadpaste{ZeroOrOne n == 1+x**n \free{x zodec}\bound{zo}}
}
\xtc{
}{
\spadpaste{ZeroOrOne 5 \free{zo}}
}
\xtc{
For the integers \spad{0, 1, 2, ...} we have this.
}{
\spadpaste{Integers n == 1/(1-x**n) \free{x idec}\bound{i}}
}
\xtc{
}{
\spadpaste{Integers 5 \free{i}}
}

\xtc{
The coefficient of \texht{$x^n$}{\spad{x**n}}
is the number of graphs with 5 nodes
and \spad{n} edges.
}{
\spadpaste{eval(ZeroOrOne, graphs 5) \free{zo}}
}
\xtc{
The coefficient of \texht{$x^n$}{\spad{x**n}}  is the number of necklaces with
\spad{n} red beads and \spad{n-8} green beads.
}{
\spadpaste{eval(ZeroOrOne,dihedral 8) \free{zo}}
}
\xtc{
The coefficient of \texht{$x^n$}{\spad{x**n}} is the number of partitions of
\spad{n} into 4 or fewer parts.
}{
\spadpaste{eval(Integers,complete 4) \free{i}}
}
\xtc{
The coefficient of \texht{$x^n$}{\spad{x**n}} is the number of
partitions of \spad{n} into 4
boxes containing ordered distinct parts.
}{
\spadpaste{eval(Integers,elementary 4) \free{i}}
}
\xtc{
The coefficient of \texht{$x^n$}{\spad{x**n}} is the number of
different cubes with \spad{n} red vertices and \spad{8-n} green ones.
}{
\spadpaste{eval(ZeroOrOne,cube) \free{zo}}
}
\xtc{
The coefficient of \texht{$x^n$}{\spad{x**n}} is the number of different cubes with integers
on the vertices whose sum is \spad{n.}
}{
\spadpaste{eval(Integers,cube) \free{i}}
}
\xtc{
The coefficient of \texht{$x^n$}{\spad{x**n}} is the number of
graphs with 5 nodes and with integers on the edges whose sum is
\spad{n.}
In other words, the enumeration is of multigraphs with 5 nodes and
\spad{n} edges.
}{
\spadpaste{eval(Integers,graphs 5) \free{i}}
}
\xtc{
Graphs with 15 nodes enumerated with respect to number of edges.
}{
\spadpaste{eval(ZeroOrOne ,graphs 15) \free{zo}}
}
\xtc{
Necklaces with 7 green beads, 8 white beads, 5 yellow beads and 10
red beads.
}{
\spadpaste{cap(dihedral 30,complete 7*complete 8*complete 5*complete 10)}
}
The operation \spadfun{SFunction} is the S-function or Schur function
of a partition written
as a descending list of integers expressed in terms of power sum
symmetric functions.
\xtc{
In this case the argument partition represents a tableau shape.
For example \spad{3,2,2,1} represents a tableau with three boxes in the
first row, two boxes in the second and third rows, and one box in the
fourth row.
\spad{SFunction [3,2,2,1]}
counts the number of different tableaux of shape \spad{3, 2, 2, 1} filled
with objects with an ascending order in the columns and a
non-descending order in the rows.
}{
\spadpaste{sf3221:= SFunction [3,2,2,1] \bound{sf3221}}
}
\xtc{
This is the number filled with \spad{a a b b c c d d.}
}{
\spadpaste{cap(sf3221,complete 2**4) \free{sf3221}}
}
The configurations enumerated above are:
\begin{verbatim}
a a b    a a c    a a d
b c      b b      b b
c d      c d      c c
d        d        d
\end{verbatim}
\xtc{
This is the number of tableaux filled with \spad{1..8.}
%-% \HDindex{tableaux}{CycleIndicatorsXmpPage}{9.13}{CycleIndicators}
}{
\spadpaste{cap(sf3221, powerSum 1**8)\free{sf3221}}
}
\xtc{
The coefficient of \texht{$x^n$}{\spad{x**n}} is the number
of column strict reverse plane partitions of \spad{n} of shape
\spad{3 2 2 1.}
}{
\spadpaste{eval(Integers, sf3221)\free{i sf3221}}
}
The smallest is
\begin{verbatim}
0 0 0
1 1
2 2
3
\end{verbatim}
\endscroll
\autobuttons
\end{page}
%