1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
|
% Copyright The Numerical Algorithms Group Limited 1992-94. All rights reserved.
% !! DO NOT MODIFY THIS FILE BY HAND !! Created by ht.awk.
\newcommand{\CartesianTensorXmpTitle}{CartesianTensor}
\newcommand{\CartesianTensorXmpNumber}{9.7}
%
% =====================================================================
\begin{page}{CartesianTensorXmpPage}{9.7 CartesianTensor}
% =====================================================================
\beginscroll
\spadtype{CartesianTensor(i0,dim,R)}
provides Cartesian tensors with
components belonging to a commutative ring \spad{R}.
Tensors can be described as a generalization of vectors and matrices.
%-% \HDindex{tensor!Cartesian}{CartesianTensorXmpPage}{9.7}{CartesianTensor}
This gives a concise {\it tensor algebra} for multilinear objects
supported by the \spadtype{CartesianTensor} domain.
You can form the inner or outer product of any two tensors and you can add
or subtract tensors with the same number of components.
Additionally, various forms of traces and transpositions are useful.
The \spadtype{CartesianTensor} constructor allows you to specify the
minimum index for subscripting.
In what follows we discuss in detail how to manipulate tensors.
\xtc{
Here we construct the domain of Cartesian tensors of dimension 2 over the
integers, with indices starting at 1.
}{
\spadpaste{CT := CARTEN(i0 := 1, 2, Integer) \bound{CT i0}}
}
\subsubsection{Forming tensors}
\labelSpace{2pc}
\xtc{
Scalars can be converted to tensors of rank zero.
}{
\spadpaste{t0: CT := 8 \free{CT}\bound{t0}}
}
\xtc{
}{
\spadpaste{rank t0 \free{t0}}
}
\xtc{
Vectors (mathematical direct products, rather than one dimensional array
structures) can be converted to tensors of rank one.
}{
\spadpaste{v: DirectProduct(2, Integer) := directProduct [3,4] \bound{v}}
}
\xtc{
}{
\spadpaste{Tv: CT := v \free{v CT}\bound{Tv}}
}
\xtc{
Matrices can be converted to tensors of rank two.
}{
\spadpaste{m: SquareMatrix(2, Integer) := matrix [[1,2],[4,5]] \bound{m}}
}
\xtc{
}{
\spadpaste{Tm: CT := m \bound{Tm}\free{CT m}}
}
\xtc{
}{
\spadpaste{n: SquareMatrix(2, Integer) := matrix [[2,3],[0,1]] \bound{n}}
}
\xtc{
}{
\spadpaste{Tn: CT := n \bound{Tn}\free{CT n}}
}
\xtc{
In general, a tensor of rank \spad{k} can be formed by making a
list of rank \spad{k-1} tensors or, alternatively, a \spad{k}-deep nested
list of lists.
}{
\spadpaste{t1: CT := [2, 3] \free{CT}\bound{t1}}
}
\xtc{
}{
\spadpaste{rank t1 \free{t1}}
}
\xtc{
}{
\spadpaste{t2: CT := [t1, t1] \free{CT t1}\bound{t2}}
}
\xtc{
}{
\spadpaste{t3: CT := [t2, t2] \free{CT t2}\bound{t3}}
}
\xtc{
}{
\spadpaste{tt: CT := [t3, t3]; tt := [tt, tt] \free{CT t3}\bound{tt}}
}
\xtc{
}{
\spadpaste{rank tt \free{tt}}
}
\subsubsection{Multiplication}
%\head{subsection}{Multiplication}{ugxCartenMult}
Given two tensors of rank \spad{k1} and \spad{k2}, the outer
%-% \HDindex{tensor!outer product}{CartesianTensorXmpPage}{9.7}{CartesianTensor}
\spadfunFrom{product}{CartesianTensor} forms a new tensor of rank
\spad{k1+k2}.
\xtc{
Here
\texht{$T_{mn}(i,j,k,l) = T_m(i,j) \ T_n(k,l).$}{%
\spad{Tmn(i,j,k,l) = Tm(i,j)*Tn(k,l).}}
}{
\spadpaste{Tmn := product(Tm, Tn)\free{Tm Tn}\bound{Tmn}}
}
The inner product (\spadfunFrom{contract}{CartesianTensor}) forms a tensor
%-% \HDindex{tensor!inner product}{CartesianTensorXmpPage}{9.7}{CartesianTensor}
of rank \spad{k1+k2-2}.
This product generalizes the vector dot product and matrix-vector product
by summing component products along two indices.
\xtc{
Here we sum along the second index of \texht{$T_m$}{\spad{Tm}} and the
first index of \texht{$T_v$}{\spad{Tv}}.
Here
\texht{$T_{mv} = \sum_{j=1}^{\hbox{\tiny\rm dim}} T_m(i,j) \ T_v(j)$}{%
\spad{Tmv(i) = sum Tm(i,j) * Tv(j) for j in 1..dim.}}
}{
\spadpaste{Tmv := contract(Tm,2,Tv,1)\free{Tm Tv}\bound{Tmv}}
}
The multiplication operator \spadopFrom{*}{CartesianTensor} is scalar
multiplication or an inner product depending on the ranks of the
arguments.
\xtc{
If either argument is rank zero it is treated as scalar multiplication.
Otherwise, \spad{a*b} is the inner product summing the last index of
\spad{a} with the first index of \spad{b}.
}{
\spadpaste{Tm*Tv \free{Tm Tv}}
}
\xtc{
This definition is consistent with the inner product on matrices
and vectors.
}{
\spadpaste{Tmv = m * v \free{Tmv m v}}
}
\subsubsection{Selecting Components}
%\head{subsection}{Selecting Components}{ugxCartenSelect}
\labelSpace{2pc}
\xtc{
For tensors of low rank (that is, four or less), components can be selected
by applying the tensor to its indices.
}{
\spadpaste{t0() \free{t0}}
}
\xtc{
}{
\spadpaste{t1(1+1) \free{t1}}
}
\xtc{
}{
\spadpaste{t2(2,1) \free{t2}}
}
\xtc{
}{
\spadpaste{t3(2,1,2) \free{t3}}
}
\xtc{
}{
\spadpaste{Tmn(2,1,2,1) \free{Tmn}}
}
\xtc{
A general indexing mechanism is provided for a list of indices.
}{
\spadpaste{t0[] \free{t0}}
}
\xtc{
}{
\spadpaste{t1[2] \free{t1}}
}
\xtc{
}{
\spadpaste{t2[2,1] \free{t2}}
}
\xtc{
The general mechanism works for tensors of arbitrary rank, but is
somewhat less efficient since the intermediate index list must be created.
}{
\spadpaste{t3[2,1,2] \free{t3}}
}
\xtc{
}{
\spadpaste{Tmn[2,1,2,1] \free{Tmn}}
}
\subsubsection{Contraction}
%\head{subsection}{Contraction}{ugxCartenContract}
A ``contraction'' between two tensors is an inner product, as we have
%-% \HDindex{tensor!contraction}{CartesianTensorXmpPage}{9.7}{CartesianTensor}
seen above.
You can also contract a pair of indices of a single tensor.
This corresponds to a ``trace'' in linear algebra.
The expression \spad{contract(t,k1,k2)} forms a new tensor by summing the
diagonal given by indices in position \spad{k1} and \spad{k2}.
\xtc{
This is the tensor given by
\texht{$xT_{mn} = \sum_{k=1}^{\hbox{\tiny\rm dim}} T_{mn}(k,k,i,j).$}{%
\spad{cTmn(i,j) = sum Tmn(k,k,i,j) for k in 1..dim.}}
}{
\spadpaste{cTmn := contract(Tmn,1,2) \free{Tmn}\bound{cTmn}}
}
\xtc{
Since \spad{Tmn} is the outer product of matrix \spad{m} and matrix \spad{n},
the above is equivalent to this.
}{
\spadpaste{trace(m) * n \free{m n}}
}
\xtc{
In this and the next few examples,
we show all possible contractions of \spad{Tmn} and their matrix
algebra equivalents.
}{
\spadpaste{contract(Tmn,1,2) = trace(m) * n \free{Tmn m n}}
}
\xtc{
}{
\spadpaste{contract(Tmn,1,3) = transpose(m) * n \free{Tmn m n}}
}
\xtc{
}{
\spadpaste{contract(Tmn,1,4) = transpose(m) * transpose(n) \free{Tmn m n}}
}
\xtc{
}{
\spadpaste{contract(Tmn,2,3) = m * n \free{Tmn m n}}
}
\xtc{
}{
\spadpaste{contract(Tmn,2,4) = m * transpose(n) \free{Tmn m n}}
}
\xtc{
}{
\spadpaste{contract(Tmn,3,4) = trace(n) * m \free{Tmn m n}}
}
\subsubsection{Transpositions}
%\head{subsection}{Transpositions}{ugxCartenTranspos}
You can exchange any desired pair of indices using the
\spadfunFrom{transpose}{CartesianTensor} operation.
\labelSpace{1pc}
\xtc{
Here the indices in positions one and three are exchanged, that is,
\texht{$tT_{mn}(i,j,k,l) = T_{mn}(k,j,i,l).$}{%
\spad{tTmn(i,j,k,l) = Tmn(k,j,i,l).}}
}{
\spadpaste{tTmn := transpose(Tmn,1,3) \free{tTmn}}
}
\xtc{
If no indices are specified, the first and last index are exchanged.
}{
\spadpaste{transpose Tmn \free{Tmn}}
}
\xtc{
This is consistent with the matrix transpose.
}{
\spadpaste{transpose Tm = transpose m \free{Tm m}}
}
If a more complicated reordering of the indices is required, then the
\spadfunFrom{reindex}{CartesianTensor} operation can be used.
This operation allows the indices to be arbitrarily permuted.
\xtc{
This defines
\texht{$rT_{mn}(i,j,k,l) = \allowbreak T_{mn}(i,l,j,k).$}{%
\spad{rTmn(i,j,k,l) = Tmn(i,l,j,k).}}
}{
\spadpaste{rTmn := reindex(Tmn, [1,4,2,3]) \free{Tmn}\bound{rTmn}}
}
\subsubsection{Arithmetic}
%\head{subsection}{Arithmetic}{ugxCartenArith}
\labelSpace{2pc}
\xtc{
Tensors of equal rank can be added or subtracted so arithmetic
expressions can be used to produce new tensors.
}{
\spadpaste{tt := transpose(Tm)*Tn - Tn*transpose(Tm) \free{Tm Tn}\bound{tt2}}
}
\xtc{
}{
\spadpaste{Tv*(tt+Tn) \free{tt2 Tv Tn}}
}
\xtc{
}{
\spadpaste{reindex(product(Tn,Tn),[4,3,2,1])+3*Tn*product(Tm,Tm) \free{Tm Tn}}
}
\subsubsection{Specific Tensors}
%\head{subsection}{Specific Tensors}{ugxCartenSpecific}
Two specific tensors have properties which depend only on the
dimension.
\labelSpace{1pc}
\xtc{
The Kronecker delta satisfies
%-% \HDindex{Kronecker delta}{CartesianTensorXmpPage}{9.7}{CartesianTensor}
\texht{}{%
\begin{verbatim}
+-
| 1 if i = j
delta(i,j) = |
| 0 if i ^= j
+-
\end{verbatim}
}%
}{
\spadpaste{delta: CT := kroneckerDelta() \free{CT}\bound{delta}}
}
\xtc{
This can be used to reindex via contraction.
}{
\spadpaste{contract(Tmn, 2, delta, 1) = reindex(Tmn, [1,3,4,2]) \free{Tmn delta}}
}
\xtc{
The Levi Civita symbol determines the sign of a permutation of indices.
}{
\spadpaste{epsilon:CT := leviCivitaSymbol() \free{CT}\bound{epsilon}}
}
Here we have:
\texht{}{%
\begin{verbatim}
epsilon(i1,...,idim)
= +1 if i1,...,idim is an even permutation of i0,...,i0+dim-1
= -1 if i1,...,idim is an odd permutation of i0,...,i0+dim-1
= 0 if i1,...,idim is not a permutation of i0,...,i0+dim-1
\end{verbatim}
}
\xtc{
This property can be used to form determinants.
}{
\spadpaste{contract(epsilon*Tm*epsilon, 1,2) = 2 * determinant m \free{epsilon Tm m}}
}
\subsubsection{Properties of the CartesianTensor domain}
%\head{subsection}{Properties of the CartesianTensor domain}{ugxCartenProp}
\spadtype{GradedModule(R,E)} denotes ``\spad{E}-graded \spad{R}-module'',
that is, a collection of \spad{R}-modules indexed by an abelian monoid
\spad{E.}
%-% \HDexptypeindex{GradedModule}{CartesianTensorXmpPage}{9.7}{CartesianTensor}
An element \spad{g} of \spad{G[s]} for some specific \spad{s}
in \spad{E} is said to be an element of \spad{G} with
\spadfunFrom{degree}{GradedModule} \spad{s}.
Sums are defined in each module \spad{G[s]} so two elements of
\spad{G} can be added if they have the same degree.
Morphisms can be defined and composed by degree to give the
mathematical category of graded modules.
\spadtype{GradedAlgebra(R,E)} denotes ``\spad{E}-graded \spad{R}-algebra.''
%-% \HDexptypeindex{GradedAlgebra}{CartesianTensorXmpPage}{9.7}{CartesianTensor}
A graded algebra is a graded module together with a degree preserving
\spad{R}-bilinear map, called the \spadfunFrom{product}{GradedAlgebra}.
\begin{verbatim}
degree(product(a,b))= degree(a) + degree(b)
product(r*a,b) = product(a,r*b) = r*product(a,b)
product(a1+a2,b) = product(a1,b) + product(a2,b)
product(a,b1+b2) = product(a,b1) + product(a,b2)
product(a,product(b,c)) = product(product(a,b),c)
\end{verbatim}
The domain \spadtype{CartesianTensor(i0, dim, R)} belongs
to the category \spadtype{GradedAlgebra(R, NonNegativeInteger)}.
The non-negative integer \spadfunFrom{degree}{GradedAlgebra}
is the tensor rank
and the graded algebra \spadfunFrom{product}{GradedAlgebra}
is the tensor outer product.
The graded module addition captures the notion that
only tensors of equal rank can be added.
If \spad{V} is a vector space of dimension \spad{dim} over \spad{R},
then the tensor module \spad{T[k](V)} is defined as
\begin{verbatim}
T[0](V) = R
T[k](V) = T[k-1](V) * V
\end{verbatim}
where \spadop{*} denotes the \spad{R}-module tensor
\spadfunFrom{product}{GradedAlgebra}.
\spadtype{CartesianTensor(i0,dim,R)} is the graded algebra in which
the degree \spad{k} module is \spad{T[k](V)}.
\subsubsection{Tensor Calculus}
%\head{subsection}{Tensor Calculus}{ugxCartenCalculus}
It should be noted here that often tensors are used in the context of
tensor-valued manifold maps.
This leads to the notion of covariant and contravariant bases with tensor
component functions transforming in specific ways under a change of
coordinates on the manifold.
This is no more directly supported by the \spadtype{CartesianTensor}
domain than it is by the \spadtype{Vector} domain.
However, it is possible to have the components implicitly represent
component maps by choosing a polynomial or expression type for the
components.
In this case, it is up to the user to satisfy any constraints which arise
on the basis of this interpretation.
\endscroll
\autobuttons
\end{page}
%
|