aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/tree.spad.pamphlet
blob: 3d5e19da66ecc91299ec3f2c007313ce29f604d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra tree.spad}
\author{William Burge}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject

\section{domain TREE Tree}

<<domain TREE Tree>>=
import Boolean
import List
)abbrev domain TREE Tree
++ Author:W. H. Burge
++ Date Created:17 Feb 1992
++ Date Last Updated:
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Examples:
++ References:
++ Description: \spadtype{Tree(S)} is a basic domains of tree structures.
++ Each tree is either empty or else is a {\it node} consisting of a value and
++ a list of (sub)trees.
Tree(S: SetCategory): T==C where
 T== Join(RecursiveAggregate S,FiniteAggregate S,ShallowlyMutableAggregate S) with
     tree: (S,List %) -> %
       ++ tree(nd,ls) creates a tree with value nd, and children
       ++ ls.
     tree: List S -> %
       ++ tree(ls) creates a tree from a list of elements of s. 
     tree: S -> %
       ++ tree(nd) creates a tree with value nd, and no children
     cyclic?: % -> Boolean
       ++ cyclic?(t) tests if t is a cyclic tree.
     cyclicCopy: % -> %
      ++ cyclicCopy(l) makes a copy of a (possibly) cyclic tree l.
     cyclicEntries:    % -> List %
       ++ cyclicEntries(t) returns a list of top-level cycles in tree t.
     cyclicEqual?: (%, %) -> Boolean
       ++ cyclicEqual?(t1, t2) tests of two cyclic trees have 
       ++ the same structure.
     cyclicParents: % -> List %
       ++ cyclicParents(t) returns a list of cycles that are parents of t.
 C== add
    cycleTreeMax ==> 5

    Rep := Union(node:Record(value: S, args: List %),empty:"empty")
    empty? t == t case empty
    empty()  == ["empty"]
    children t == 
      t case empty => error "cannot take the children of an empty tree" 
      (t.node.args)@List(%)
    setchildren!(t,lt) == 
      t case empty => error "cannot set children of an empty tree"
      (t.node.args:=lt;t pretend %)
    setvalue!(t,s) == 
      t case empty => error "cannot set value of an empty tree"
      (t.node.value:=s;s)
    count(n: S, t: %) == 
      t case empty => 0
      i := +/[count(n, c) for c in children t]
      value t = n => i + 1
      i
    count(fn: S -> Boolean, t: %): NonNegativeInteger ==
      t case empty => 0
      i := +/[count(fn, c) for c in children t]
      fn value t => i + 1
      i
    map(fn, t) == 
      t case empty => t
      tree(fn value t,[map(fn, c) for c in children t])
    map!(fn, t) == 
      t case empty => t
      setvalue!(t, fn value t)
      for c in children t repeat map!(fn, c)
      t
    tree(s,lt) == [[s,lt]]
    tree(s: S) == [[s,[]]]
    tree(ls: List S) ==
      empty? ls => empty()
      tree(first ls, [tree s for s in rest ls])
    value t ==
      t case empty => error "cannot take the value of an empty tree" 
      t.node.value
    child?(t1,t2) == 
      empty? t2 => false
      "or"/[t1 = t for t in children t2]
    distance1(t1: %, t2: %): Integer ==
      t1 = t2 => 0
      t2 case empty => -1
      u := [n for t in children t2 | (n := distance1(t1,t)) >= 0]
      positive?(#u) => 1 + "min"/u 
      -1 
    distance(t1,t2) == 
      n := distance1(t1, t2)
      n >= 0 => n
      distance1(t2, t1)
    node?(t1, t2) ==
      t1 = t2 => true
      t2 case empty => false
      "or"/[node?(t1, t) for t in children t2]
    leaf? t == 
      t case empty => false
      empty? children t
    leaves t == 
      t case empty => empty()
      leaf? t => [value t]
      "append"/[leaves c for c in children t]
    nodes t ==       ---buggy
      t case empty => empty()
      nl := [nodes c for c in children t]
      nl = empty() => [t]
      cons(t,"append"/nl)
    any?(fn, t) ==  ---bug fixed
      t case empty => false
      fn value t or "or"/[any?(fn, c) for c in children t]
    every?(fn, t) == 
      t case empty => true
      fn value t and "and"/[every?(fn, c) for c in children t]
    member?(n, t) == 
      t case empty => false
      n = value t or "or"/[member?(n, c) for c in children t]
    members t == --buggy?
      t case empty => empty()
      u := [members c for c in children t]
      u = empty() => [value t]
      cons(value t,"append"/u)
 
    ---Functions that guard against cycles: =, #, copy-------------

    -----> =   
    equal?: (%, %, %, %, Integer) -> Boolean

    t1 = t2 == equal?(t1, t2, t1, t2, 0) 

    equal?(t1, t2, ot1, ot2, k) ==
      k = cycleTreeMax and (cyclic? ot1 or cyclic? ot2) => 
        error "use cyclicEqual? to test equality on cyclic trees"
      t1 case empty => t2 case empty
      t2 case empty => false
      value t1 = value t2 and (c1 := children t1) = (c2 := children t2) and
        "and"/[equal?(x,y,ot1, ot2,k + 1) for x in c1 for y in c2]

    -----> #
    treeCount: (%, %, NonNegativeInteger) -> NonNegativeInteger    
    # t == treeCount(t, t, 0)
    treeCount(t, origTree, k) ==
      k = cycleTreeMax and cyclic? origTree => 
        error "# is not defined on cyclic trees"
      t case empty => 0
      1 + +/[treeCount(c, origTree, k + 1) for c in children t]
 
    -----> copy
    copy1: (%, %, Integer) -> %
    copy t == copy1(t, t, 0)
    copy1(t, origTree, k) == 
      k = cycleTreeMax and cyclic? origTree => 
        error "use cyclicCopy to copy a cyclic tree"
      t case empty  => t
      empty? children t => tree value t
      tree(value t, [copy1(x, origTree, k + 1) for x in children t])
      
    -----------Functions that allow cycles---------------
    --local utility functions:
    eqUnion: (List %, List %) -> List %
    eqMember?: (%, List %) -> Boolean
    eqMemberIndex: (%, List %, Integer) -> Integer
    lastNode: List % -> List %
    insert: (%, List %) -> List %

    -----> coerce to OutputForm
    if S has CoercibleTo(OutputForm) then
      multipleOverbar: (OutputForm, Integer, List %) -> OutputForm
      coerce1: (%, List %, List %) -> OutputForm

      coerce(t:%): OutputForm == coerce1(t, empty()$(List %), cyclicParents t)

      coerce1(t,parents, pl) ==
        t case empty => empty()@List(S)::OutputForm
        eqMember?(t, parents) => 
          multipleOverbar((".")::OutputForm,eqMemberIndex(t, pl,0),pl)
        empty? children t => value t::OutputForm
        nodeForm := (value t)::OutputForm
        if positive?(k := eqMemberIndex(t, pl, 0)) then
           nodeForm := multipleOverbar(nodeForm, k, pl)
        prefix(nodeForm, 
          [coerce1(br,cons(t,parents),pl) for br in children t])

      multipleOverbar(x, k, pl) ==
        k < 1 => x
        #pl = 1 => overbar x
        s : String := "abcdefghijklmnopqrstuvwxyz"
        c := s.(1 + ((k - 1) rem 26))
        overlabel(c::OutputForm, x)
 
    -----> cyclic?
    cyclic2?: (%, List %) -> Boolean

    cyclic? t == cyclic2?(t, empty()$(List %))

    cyclic2?(x,parents) ==  
      empty? x => false
      eqMember?(x, parents) => true
      for y in children x repeat
        cyclic2?(y,cons(x, parents)) => return true
      false
 
    -----> cyclicCopy
    cyclicCopy2: (%, List %) -> %
    copyCycle2: (%, List %) -> %
    copyCycle4: (%, %, %, List %) -> %

    cyclicCopy(t) == cyclicCopy2(t, cyclicEntries t)

    cyclicCopy2(t, cycles) ==
      eqMember?(t, cycles) => copyCycle2(t, cycles)
      tree(value t, [cyclicCopy2(c, cycles) for c in children t])
   
    copyCycle2(cycle, cycleList) == 
      newCycle := tree(value cycle, nil)
      setchildren!(newCycle,
        [copyCycle4(c,cycle,newCycle, cycleList) for c in children cycle])
      newCycle

    copyCycle4(t, cycle, newCycle, cycleList) == 
      empty? cycle => empty()
      eq?(t, cycle) => newCycle
      eqMember?(t, cycleList) => copyCycle2(t, cycleList)
      tree(value t,
           [copyCycle4(c, cycle, newCycle, cycleList) for c in children t])

    -----> cyclicEntries
    cyclicEntries3: (%, List %, List %) -> List %

    cyclicEntries(t) == cyclicEntries3(t, empty()$(List %), empty()$(List %))

    cyclicEntries3(t, parents, cl) ==
      empty? t => cl
      eqMember?(t, parents) => insert(t, cl)
      parents := cons(t, parents)
      for y in children t repeat
        cl := cyclicEntries3(t, parents, cl)
      cl
   
    -----> cyclicEqual?
    cyclicEqual4?: (%, %, List %, List %) -> Boolean

    cyclicEqual?(t1, t2) ==
      cp1 := cyclicParents t1
      cp2 := cyclicParents t2
      #cp1 ~= #cp2 or null cp1 => t1 = t2
      cyclicEqual4?(t1, t2, cp1, cp2)

    cyclicEqual4?(t1, t2, cp1, cp2) == 
      t1 case empty => t2 case empty
      t2 case empty => false
      0 ~= (k := eqMemberIndex(t1, cp1, 0)) => eq?(t2, cp2 . k)
      value t1 = value t2 and 
        "and"/[cyclicEqual4?(x,y,cp1,cp2) 
                 for x in children t1 for y in children t2]

    -----> cyclicParents t
    cyclicParents3: (%, List %, List %) -> List %

    cyclicParents t == cyclicParents3(t, empty()$(List %), empty()$(List %))

    cyclicParents3(x, parents, pl) ==
      empty? x => pl
      eqMember?(x, parents) => 
        cycleMembers := [y for y in parents while not eq?(x,y)]
        eqUnion(cons(x, cycleMembers), pl)
      parents := cons(x, parents)
      for y in children x repeat 
        pl := cyclicParents3(y, parents, pl)
      pl

    insert(x, l) ==
      eqMember?(x, l) => l
      cons(x, l)

    lastNode l ==
      empty? l => error "empty tree has no last node"
      while not empty? rest l repeat l := rest l
      l

    eqMember?(y,l) ==
      for x in l repeat eq?(x,y) => return true
      false

    eqMemberIndex(x, l, k) ==
      null l => k
      k := k + 1
      eq?(x, first l) => k
      eqMemberIndex(x, rest l, k)

    eqUnion(u, v) ==
      null u => v
      x := first u
      newV :=
        eqMember?(x, v) => v
        cons(x, v)
      eqUnion(rest u, newV)

@
\section{category BTCAT BinaryTreeCategory}
<<category BTCAT BinaryTreeCategory>>=
)abbrev category BTCAT BinaryTreeCategory
++ Author:W. H. Burge
++ Date Created:17 Feb 1992
++ Date Last Updated:
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Examples:
++ References:
++ Description: \spadtype{BinaryTreeCategory(S)} is the category of
++ binary trees: a tree which is either empty or else is a \spadfun{node} consisting
++ of a value and a \spadfun{left} and \spadfun{right}, both binary trees. 
BinaryTreeCategory(S: SetCategory): Category == Join(BinaryRecursiveAggregate S,FiniteAggregate S,ShallowlyMutableAggregate S) with
   node: (%,S,%) -> %
     ++ node(left,v,right) creates a binary tree with value \spad{v}, a binary
     ++ tree \spad{left}, and a binary tree \spad{right}.
 add
     cycleTreeMax ==> 5

     copy t ==
       empty? t => empty()
       node(copy left t, value t, copy right t)
     map!(f,t) ==
       empty? t => t
       t.value := f(t.value)
       map!(f,left t)
       map!(f,right t)
       t
     treeCount : (%, NonNegativeInteger) -> NonNegativeInteger
     #t == treeCount(t,0)
     treeCount(t,k) ==
       empty? t => k
       k := k + 1
       k = cycleTreeMax and cyclic? t => error "cyclic binary tree"
       k := treeCount(left t,k)
       treeCount(right t,k)

@
\section{domain BTREE BinaryTree}
<<domain BTREE BinaryTree>>=
)abbrev domain BTREE BinaryTree
++ Description: \spadtype{BinaryTree(S)} is the domain of all
++ binary trees. A binary tree over \spad{S} is either empty or has
++ a \spadfun{value} which is an S and a \spadfun{right}
++ and \spadfun{left} which are both binary trees.
BinaryTree(S: SetCategory): Exports == Implementation where
  Exports == BinaryTreeCategory(S) with
     binaryTree: S -> %
       ++ binaryTree(v) is an non-empty binary tree
       ++ with value v, and left and right empty.
     binaryTree: (%,S,%) -> %    
       ++ binaryTree(l,v,r) creates a binary tree with
       ++ value v with left subtree l and right subtree r.
  Implementation == add
     Rep := List Tree S
     t1 = t2 == (t1::Rep) =$Rep (t2::Rep)
     empty()== [] pretend %
     node(l,v,r) == cons(tree(v,l:Rep),r:Rep)
     binaryTree(l,v,r) == node(l,v,r)
     binaryTree(v:S) == node(empty(),v,empty())
     empty? t == empty?(t)$Rep
     leaf? t  == empty? t or empty? left t and empty? right t
     right t ==
       empty? t => error "binaryTree:no right"
       rest t
     left t ==
       empty? t => error "binaryTree:no left"
       children first t
     value t==
       empty? t => error "binaryTree:no value"
       value first t
     setvalue! (t,nd)==
       empty? t => error "binaryTree:no value to set"
       setvalue!(first(t:Rep),nd)
       nd
     setleft!(t1,t2) ==
       empty? t1 => error "binaryTree:no left to set"
       setchildren!(first(t1:Rep),t2:Rep)
       t1
     setright!(t1,t2) ==
       empty? t1 => error "binaryTree:no right to set"
       setrest!(t1:List Tree S,t2)

@
\section{domain BSTREE BinarySearchTree}
<<domain BSTREE BinarySearchTree>>=
)abbrev domain BSTREE BinarySearchTree
++ Description: BinarySearchTree(S) is the domain of
++ a binary trees where elements are ordered across the tree.
++ A binary search tree is either empty or has
++ a value which is an S, and a
++ right and left which are both BinaryTree(S)
++ Elements are ordered across the tree.
BinarySearchTree(S: OrderedSet): Exports == Implementation where
  Exports == BinaryTreeCategory(S) with
    binarySearchTree: List S -> %
	++ binarySearchTree(l) \undocumented
    insert!: (S,%) -> %
      ++ insert!(x,b) inserts element x as leaves into binary search tree b.
    insertRoot!: (S,%) -> %
      ++ insertRoot!(x,b) inserts element x as a root of binary search tree b.
    split:      (S,%) -> Record(less: %, greater: %)
      ++ split(x,b) splits binary tree b into two trees, one with elements greater
      ++ than x, the other with elements less than x.
  Implementation == BinaryTree(S) add
    Rep := BinaryTree(S)
    binarySearchTree(u:List S) ==
      null u => empty()
      tree := binaryTree(first u)
      for x in rest u repeat insert!(x,tree)
      tree
    insert!(x,t) ==
      empty? t => binaryTree(x)
      x >= value t =>
        setright!(t,insert!(x,right t))
        t
      setleft!(t,insert!(x,left t))
      t
    split(x,t) ==
      empty? t => [empty(),empty()]
      x > value t =>
        a := split(x,right t)
        [node(left t, value t, a.less), a.greater]
      a := split(x,left t)
      [a.less, node(a.greater, value t, right t)]
    insertRoot!(x,t) ==
      a := split(x,t)
      node(a.less, x, a.greater)

@
\section{domain BTOURN BinaryTournament}
<<domain BTOURN BinaryTournament>>=
)abbrev domain BTOURN BinaryTournament
++ Description: \spadtype{BinaryTournament(S)} is the domain of
++ binary trees where elements are ordered down the tree.
++ A binary search tree is either empty or is a node containing a
++ \spadfun{value} of type \spad{S}, and a \spadfun{right}
++ and a \spadfun{left} which are both \spadtype{BinaryTree(S)}
BinaryTournament(S: OrderedSet): Exports == Implementation where
  Exports == BinaryTreeCategory(S) with
    binaryTournament: List S -> %
      ++ binaryTournament(ls) creates a binary tournament with the
      ++ elements of ls as values at the nodes.
    insert!: (S,%) -> %
      ++ insert!(x,b) inserts element x as leaves into binary tournament b.
  Implementation == BinaryTree(S) add
    Rep := BinaryTree(S)
    binaryTournament(u:List S) ==
      null u => empty()
      tree := binaryTree(first u)
      for x in rest u repeat insert!(x,tree)
      tree
    insert!(x,t) ==
      empty? t => binaryTree(x)
      x > value t =>
        setleft!(t,copy t)
        setvalue!(t,x)
        setright!(t,empty())
      setright!(t,insert!(x,right t))
      t

@
\section{domain BBTREE BalancedBinaryTree}
<<domain BBTREE BalancedBinaryTree>>=
)abbrev domain BBTREE BalancedBinaryTree
++ Description: \spadtype{BalancedBinaryTree(S)} is the domain of balanced
++ binary trees (bbtree). A balanced binary tree of \spad{2**k} leaves,
++ for some \spad{k > 0}, is symmetric, that is, the left and right
++ subtree of each interior node have identical shape.
++ In general, the left and right subtree of a given node can differ
++ by at most leaf node.
BalancedBinaryTree(S: SetCategory): Exports == Implementation where
  Exports == BinaryTreeCategory(S) with
--  BUG: applies wrong fnct for balancedBinaryTree(0,[1,2,3,4])
--    balancedBinaryTree: (S, List S) -> %
--      ++ balancedBinaryTree(s, ls) creates a balanced binary tree with
--      ++ s at the interior nodes and elements of ls at the
--      ++ leaves.
    balancedBinaryTree: (NonNegativeInteger, S) -> %
      ++ balancedBinaryTree(n, s) creates a balanced binary tree with
      ++ n nodes each with value s.
    setleaves!: (%, List S) -> %
      ++ setleaves!(t, ls) sets the leaves of t in left-to-right order
      ++ to the elements of ls.
    mapUp!: (%, (S,S) -> S) -> S
      ++ mapUp!(t,f) traverses balanced binary tree t in an "endorder"
      ++ (left then right then node) fashion returning t with the value
      ++ at each successive interior node of t replaced by
      ++ f(l,r) where l and r are the values at the immediate
      ++ left and right nodes.
    mapUp!: (%, %, (S,S,S,S) -> S) -> %
      ++ mapUp!(t,t1,f) traverses t in an "endorder" (left then right then node)
      ++ fashion  returning t with the value at each successive interior
      ++ node of t replaced by
      ++ f(l,r,l1,r1) where l and r are the values at the immediate
      ++ left and right nodes. Values l1 and r1 are values at the
      ++ corresponding nodes of a balanced binary tree t1, of identical
      ++ shape at t.
    mapDown!: (%,S,(S,S) -> S) -> %
      ++ mapDown!(t,p,f) returns t after traversing t in "preorder"
      ++ (node then left then right) fashion replacing the successive
      ++ interior nodes as follows. The root value x is
      ++ replaced by q := f(p,x). The mapDown!(l,q,f) and
      ++ mapDown!(r,q,f) are evaluated for the left and right subtrees
      ++ l and r of t.
    mapDown!: (%,S, (S,S,S) -> List S) -> %
      ++ mapDown!(t,p,f) returns t after traversing t in "preorder"
      ++ (node then left then right) fashion replacing the successive
      ++ interior nodes as follows. Let l and r denote the left and
      ++ right subtrees of t. The root value x of t is replaced by p.
      ++ Then f(value l, value r, p), where l and r denote the left
      ++ and right subtrees of t, is evaluated producing two values
      ++ pl and pr. Then \spad{mapDown!(l,pl,f)} and \spad{mapDown!(l,pr,f)}
      ++ are evaluated.
  Implementation == BinaryTree(S) add
    Rep := BinaryTree(S)
    leaf? x ==
      empty? x => false
      empty? left x and empty? right x
--    balancedBinaryTree(x: S, u: List S) ==
--      n := #u
--      n = 0 => empty()
--      setleaves!(balancedBinaryTree(n, x), u)
    setleaves!(t, u) ==
      n := #u
      n = 0 =>
        empty? t => t
        error "the tree and list must have the same number of elements"
      n = 1 =>
        setvalue!(t,first u)
        t
      m := n quo 2
      acc := empty()$(List S)
      for i in 1..m repeat
        acc := [first u,:acc]
        u := rest u
      setleaves!(left t, reverse! acc)
      setleaves!(right t, u)
      t
    balancedBinaryTree(n: NonNegativeInteger, val: S) ==
      n = 0 => empty()
      n = 1 => node(empty(),val,empty())
      m := n quo 2
      node(balancedBinaryTree(m, val), val,
           balancedBinaryTree((n - m) pretend NonNegativeInteger, val))
    mapUp!(x,fn) ==
      empty? x => error "mapUp! called on a null tree"
      leaf? x  => x.value
      x.value := fn(mapUp!(x.left,fn),mapUp!(x.right,fn))
    mapUp!(x,y,fn) ==
      empty? x  => error "mapUp! is called on a null tree"
      leaf? x  =>
        leaf? y => x
        error "balanced binary trees are incompatible"
      leaf? y  =>  error "balanced binary trees are incompatible"
      mapUp!(x.left,y.left,fn)
      mapUp!(x.right,y.right,fn)
      x.value := fn(x.left.value,x.right.value,y.left.value,y.right.value)
      x
    mapDown!(x: %, p: S, fn: (S,S) -> S ) ==
      empty? x => x
      x.value := fn(p, x.value)
      mapDown!(x.left, x.value, fn)
      mapDown!(x.right, x.value, fn)
      x
    mapDown!(x: %, p: S, fn: (S,S,S) -> List S) ==
      empty? x => x
      x.value := p
      leaf? x => x
      u := fn(x.left.value, x.right.value, p)
      mapDown!(x.left, u.1, fn)
      mapDown!(x.right, u.2, fn)
      x

@
\section{domain PENDTREE PendantTree}
<<domain PENDTREE PendantTree>>=
)abbrev domain PENDTREE PendantTree
++ A PendantTree(S)is either a leaf? and is an S or has
++ a left and a right both PendantTree(S)'s
PendantTree(S: SetCategory): T == C where
 T == Join(BinaryRecursiveAggregate(S),CoercibleTo Tree S) with
     ptree : S->%
       ++ ptree(s) is a leaf? pendant tree
     ptree:(%, %)->%
	++ ptree(x,y) \undocumented
 
 C == add
     Rep := Tree S
     import Tree S
     coerce (t:%):Tree S == t pretend Tree S
     ptree(n) == tree(n,[])$Rep pretend %
     ptree(l,r) == tree(value(r:Rep)$Rep,cons(l,children(r:Rep)$Rep)):%
     leaf? t == empty?(children(t)$Rep)
     t1=t2 == (t1:Rep) = (t2:Rep)
     left b ==
       leaf? b => error "ptree:no left"
       first(children(b)$Rep)
     right b ==
       leaf? b => error "ptree:no right"
       tree(value(b)$Rep,rest (children(b)$Rep))
     value b ==
       leaf? b => value(b)$Rep
       error "the pendant tree has no value"
     coerce(b:%): OutputForm ==
       leaf? b => value(b)$Rep :: OutputForm
       paren blankSeparate [left b::OutputForm,right b ::OutputForm]

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
 
<<domain TREE Tree>>
<<category BTCAT BinaryTreeCategory>>
<<domain BTREE BinaryTree>>
<<domain BBTREE BalancedBinaryTree>>
<<domain BSTREE BinarySearchTree>>
<<domain BTOURN BinaryTournament>>
<<domain PENDTREE PendantTree>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}