aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/transsolve.spad.pamphlet
blob: f4bb6f6be89bc704d1f1fa097d86739c863322eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra transsolve.spad}
\author{Waldemar Wiwianka, Martin Rubey}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package SOLVETRA TransSolvePackage}
<<package SOLVETRA TransSolvePackage>>=
)abbrev package SOLVETRA TransSolvePackage
++ Author: W. Wiwianka, Martin Rubey
++ Date Created: Summer 1991
++ Change History: 9/91
++ Basic Operations: solve
++ Related Constructors: RadicalSolvePackage, FloatingRealPackage
++ Keywords:
++ Description:
++  This package tries to find solutions of equations of type Expression(R).
++  This means expressions involving transcendental, exponential, logarithmic
++  and nthRoot functions.
++  After trying to transform different kernels to one kernel by applying
++  several rules, it calls zerosOf for the SparseUnivariatePolynomial in
++  the remaining kernel.
++  For example the expression  \spad{sin(x)*cos(x)-2}  will be transformed to
++     \spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}
++  by  using the function  normalize  and then to
++     \spad{-2 tan(x)**2 + tan(x) -2}
++  with help of subsTan. This function tries to express the given function
++  in terms of \spad{tan(x/2)}  to express in terms of \spad{tan(x)} .
++  Other examples are the expressions    \spad{sqrt(x+1)+sqrt(x+7)+1}   or
++   \spad{sqrt(sin(x))+1} .


TransSolvePackage(R) : Exports == Implementation where
   R : Join(OrderedSet, EuclideanDomain, RetractableTo Integer, 
             LinearlyExplicitRingOver Integer, CharacteristicZero)

   I   ==> Integer
   NNI ==> NonNegativeInteger
   RE  ==> Expression R
   EQ  ==> Equation
   S   ==> Symbol
   V   ==> Variable
   L   ==> List
   K   ==> Kernel RE
   SUP ==> SparseUnivariatePolynomial
   C   ==> Complex 
   F   ==> Float
   INT ==> Interval
   SMP ==> SparseMultivariatePolynomial


   Exports == with

     solve :  RE           ->  L EQ RE
       ++ solve(expr) finds the solutions of the equation expr = 0
       ++ where expr is a function of type Expression(R)
       ++ with respect to the unique symbol x appearing in eq.
     solve :  EQ RE        ->  L EQ RE
       ++ solve(eq) finds the solutions of the equation  eq
       ++ where  eq  is  an equation of functions of type Expression(R)
       ++ with respect to the unique symbol x appearing in eq.
     solve : ( EQ RE , S ) ->  L EQ RE
       ++ solve(eq,x) finds the solutions of the equation  eq
       ++ where  eq  is  an equation of functions of type Expression(R)
       ++ with respect to the symbol x.
     solve : ( RE , S)     ->  L EQ RE
       ++ solve(expr,x) finds the solutions of the equation expr = 0
       ++ with respect to the symbol x where expr is a function
       ++ of type Expression(R).
     solve :  (L EQ RE, L S) -> L L EQ RE
       ++ solve(leqs, lvar) returns a list of solutions to the list of 
       ++ equations leqs with respect to the list of symbols lvar.
--     solve :  (L EQ RE, L Kernel RE) -> L L EQ RE
--       ++ solve(leqs, lker) returns a list of solutions to the list
--       ++ of equations leqs with respect to the list of kernels lker.

   Implementation == add
     import ACF
     import HomogeneousAggregate(R)
     import AlgebraicManipulations(R, RE)
     import TranscendentalManipulations(R, RE)
     import TrigonometricManipulations(R, RE)
     import ElementaryFunctionStructurePackage(R, RE)
     import SparseUnivariatePolynomial(R)
     import LinearSystemMatrixPackage(RE,Vector RE,Vector RE,Matrix RE)
     import TransSolvePackageService(R)
     import MultivariateFactorize(K, IndexedExponents K, R, SMP(R, K))



        ---- Local Function Declarations ----

     solveInner : (RE, S) -> L EQ RE
     tryToTrans : ( RE , S)     ->  RE

     eliminateKernRoot: (RE , K) -> RE
     eliminateRoot: (RE , S) -> RE

     combineLog : ( RE , S ) -> RE
     testLog : ( RE , S ) -> Boolean
     splitExpr : ( RE ) -> L RE
     buildnexpr : ( RE , S ) -> L RE
     logsumtolog : RE -> RE
     logexpp : ( RE , RE ) -> RE

     testRootk : ( RE, S) -> Boolean
     testkernel : ( RE , S ) -> Boolean
     funcinv : ( RE , RE ) -> Union(RE,"failed")
     testTrig : ( RE , S ) -> Boolean
     testHTrig : ( RE , S ) -> Boolean
     tableXkernels : ( RE , S ) -> L RE
     subsTan : ( RE , S )  -> RE
 
 
     -- exported functions


     solve(oside: RE) : L EQ RE ==
       zero? oside => error "equation is always satisfied"
       lv := variables oside
       empty? lv => error "inconsistent equation"
       #lv>1 => error "too many variables"
       solve(oside,lv.first)

     solve(equ:EQ RE) : L EQ RE ==
       solve(lhs(equ)-rhs(equ))

     solve(equ:EQ RE, x:S) : L EQ RE ==
       oneside:=lhs(equ)-rhs(equ)
       solve(oneside,x)

     testZero?(lside:RE,sol:EQ RE):Boolean ==
       if R has QuotientFieldCategory(Integer) then
         retractIfCan(rhs sol)@Union(Integer,"failed") case "failed" => true
       else
         retractIfCan(rhs sol)@Union(Fraction Integer,"failed") case "failed" => true
       zero? eval(lside,sol) => true
       false

     solve(lside: RE, x:S) : L EQ RE ==
       [sol for sol in solveInner(lside,x) | testZero?(lside,sol)]

     solveInner(lside: RE, x:S) : L EQ RE ==
       lside:=eliminateRoot(lside,x)
       ausgabe1:=tableXkernels(lside,x)

       X:=new()@Symbol
       Y:=new()@Symbol::RE
       (#ausgabe1) = 1 =>
          bigX:= (first ausgabe1)::RE
          eq1:=eval(lside,bigX=(X::RE))
              -- Type  :  Expression R
          f:=univariate(eq1,first kernels (X::RE))
              -- Type  :  Fraction SparseUnivariatePolynomial Expression R
          lfatt:= factors factorPolynomial numer f
          lr:L RE := "append" /[zerosOf(fatt.factor,x) for fatt in lfatt]
              -- Type  :  List Expression R
          r1:=[]::L RE
          for i in 1..#lr repeat
             finv := funcinv(bigX,lr(i))
             if finv case RE then r1:=cons(finv::RE,r1)
          bigX_back:=funcinv(bigX,bigX)::RE
          if not testkernel(bigX_back,x) then
            if bigX = bigX_back then return []::L EQ RE
            return
              "append"/[solve(bigX_back-ri, x) for ri in r1]
          newlist:=[]::L EQ RE

          for i in 1..#r1 repeat
             elR :=  eliminateRoot((numer(bigX_back - r1(i))::RE ),x)
             f:=univariate(elR, kernel(x))
              -- Type  :  Fraction SparseUnivariatePolynomial Expression R
             lfatt:= factors factorPolynomial numer f
             secondsol:="append" /[zerosOf(ff.factor,x) for ff in lfatt]
             for j in 1..#secondsol repeat
                newlist:=cons((x::RE)=rootSimp( secondsol(j) ),newlist)
          newlist
       newlside:=tryToTrans(lside,x) ::RE
       listofkernels:=tableXkernels(newlside,x)
       (#listofkernels) = 1 => solve(newlside,x)
       lfacts := factors factor(numer lside)
       #lfacts > 1 =>
          sols : L EQ RE := []
          for frec in lfacts repeat
              sols := append(solve(frec.factor :: RE, x), sols)
          sols
       return []::L EQ RE

    -- local functions

     --  This function was suggested by Manuel Bronstein as a simpler 
     --  alternative to normalize.
     simplifyingLog(f:RE):RE ==
       (u:=isExpt(f,'exp)) case Record(var:Kernel RE,exponent:Integer) =>       
         rec := u::Record(var:Kernel RE,exponent:Integer)
         rec.exponent * first argument(rec.var)
       log f


     testkernel(var1:RE,y:S) : Boolean ==
       var1:=eliminateRoot(var1,y)
       listvar1:=tableXkernels(var1,y)
       if (#listvar1 = 1) and ((listvar1(1) = (y::RE))@Boolean ) then
            true
       else if #listvar1 = 0 then true
            else false

     solveRetract(lexpr:L RE, lvar:L S):Union(L L EQ RE, "failed") ==
        nlexpr : L Fraction Polynomial R := []
        for expr in lexpr repeat
           rf:Union(Fraction Polynomial R, "failed") := retractIfCan(expr)$RE
           rf case "failed" => return "failed"
           nlexpr := cons(rf, nlexpr)
        radicalSolve(nlexpr, lvar)$RadicalSolvePackage(R)

     tryToTrans(lside: RE, x:S) : RE ==
       if testTrig(lside,x) or testHTrig(lside,x) then
          convLside:=( simplify(lside) )::RE
          resultLside:=convLside
          listConvLside:=tableXkernels(convLside,x)
          if (#listConvLside) > 1  then
            NormConvLside:=normalize(convLside,x)
            NormConvLside:=( NormConvLside ) :: RE
            resultLside:=subsTan(NormConvLside , x)

       else if testLog(lside,x) then
              numlside:=numer(lside)::RE
              resultLside:=combineLog(numlside,x)
            else
              NormConvLside:=normalize(lside,x)
              NormConvLside:=( NormConvLside ) :: RE
              resultLside:=NormConvLside
              listConvLside:=tableXkernels(NormConvLside,x)
              if  (#listConvLside) > 1  then
                cnormConvLside:=complexNormalize(lside,x)
                cnormConvLside:=cnormConvLside::RE
                resultLside:=cnormConvLside
                listcnorm:=tableXkernels(cnormConvLside,x)
                if (#listcnorm) > 1 then
                  if testLog(cnormConvLside,x) then
                    numlside:=numer(cnormConvLside)::RE
                    resultLside:=combineLog(numlside,x)
       resultLside


     subsTan(exprvar:RE,y:S) : RE ==
       Z:=new()@Symbol
       listofkern:=tableXkernels(exprvar,y)
       varkern:=(first listofkern)::RE
       Y:=(numer first argument first (kernels(varkern)))::RE
       test : Boolean := varkern=tan(((Y::RE)/(2::RE))::RE)
       if not( (#listofkern=1) and test) then
         return exprvar
       fZ:=eval(exprvar,varkern=(Z::RE))
       fN:=(numer fZ)::RE
       f:=univariate(fN, first kernels(Z::RE))
       secondfun:=(-2*(Y::RE)/((Y::RE)**2-1) )::RE
       g:=univariate(secondfun,first kernels(y::RE))
       H:=(new()@Symbol)::RE
       newH:=univariate(H,first kernels(Z::RE))
       result:=decomposeFunc(f,g,newH)
       if not ( result = f ) then
         result1:=result( H::RE )
         resultnew:=eval(result1,H=(( tan((Y::RE))::RE ) ))
       else return exprvar


     eliminateKernRoot(var: RE, varkern: K) : RE ==
       X:=new()@Symbol
       var1:=eval(var, (varkern::RE)=(X::RE) )
       var2:=numer univariate(var1, first kernels(X::RE))
       var3:= monomial(1, ( retract( second argument varkern)@I )::NNI)@SUP RE_
              - monomial(first argument varkern, 0::NNI)@SUP RE
       resultvar:=resultant(var2, var3)

     eliminateRoot(var:RE, y:S) : RE ==
       var1:=var
       while testRootk(var1,y) repeat
         varlistk1:=tableXkernels(var1,y)
         for i in varlistk1 repeat
            if is?(i, 'nthRoot) then
              var1:=eliminateKernRoot(var1,first kernels(i::RE))
       var1


     logsumtolog(var:RE) : RE ==
       (listofexpr:=isPlus(var)) case "failed" => var
       listofexpr:= listofexpr ::L RE
       listforgcd:=[]::L R
       for i in listofexpr repeat
          exprcoeff:=leadingCoefficient(numer(i))
          listforgcd:=cons(exprcoeff, listforgcd)
       gcdcoeff:=gcd(listforgcd)::RE
       newexpr:RE :=0
       for i in listofexpr repeat
          exprlist:=splitExpr(i::RE)
          newexpr:=newexpr + logexpp(exprlist.2, exprlist.1/gcdcoeff)
       kernelofvar:=kernels(newexpr)
       var2:=1::RE
       for i in kernelofvar repeat
          var2:=var2*(first argument i)
       gcdcoeff * log(var2)


     testLog(expr:RE,Z:S) : Boolean ==
       testList:=[log]::L S
       kernelofexpr:=tableXkernels(expr,Z)
       if #kernelofexpr = 0 then
         return false
       for i in kernelofexpr repeat
          if not member?(name(first kernels(i)),testList) or _
             not testkernel( (first argument first kernels(i)) ,Z) then
            return false
       true

     splitExpr(expr:RE) : L RE ==
       lcoeff:=leadingCoefficient((numer expr))
       exprwcoeff:=expr
       listexpr:=isTimes(exprwcoeff)
       if listexpr case "failed" then
         [1::RE , expr]
       else
         listexpr:=remove_!(lcoeff::RE , listexpr)
         cons(lcoeff::RE , listexpr)

     buildnexpr(expr:RE, Z:S) : L RE ==
       nlist:=splitExpr(expr)
       n2list:=remove_!(nlist.1, nlist)
       anscoeff:RE:=1
       ansmant:RE:=0
       for i in n2list repeat
          if freeOf?(i::RE,Z) then
            anscoeff:=(i::RE)*anscoeff
          else
            ansmant:=(i::RE)
       [anscoeff, ansmant * nlist.1 ]

     logexpp(expr1:RE, expr2:RE) : RE ==
       log( (first argument first kernels(expr1))**expr2 )

     combineLog(expr:RE,Y:S) : RE ==
       exprtable:Table(RE,RE):=table()
       (isPlus(expr)) case "failed" => expr
       ans:RE:=0
       while expr ~= 0 repeat
         loopexpr:RE:=leadingMonomial(numer(expr))::RE
         if testLog(loopexpr,Y) and (#tableXkernels(loopexpr,Y)=1) then
           exprr:=buildnexpr(loopexpr,Y)
           if search(exprr.1,exprtable) case "failed" then
             exprtable.(exprr.1):=0
           exprtable.(exprr.1):= exprtable.(exprr.1) + exprr.2
         else
           ans:=ans+loopexpr
         expr:=(reductum(numer expr))::RE
       ansexpr:RE:=0
       for i in keys(exprtable) repeat
          ansexpr:=ansexpr + logsumtolog(exprtable.i) * (i::RE)
       ansexpr:=ansexpr + ans


     testRootk(varlistk:RE,y:S) : Boolean ==
       testList:=[nthRoot]::L S
       kernelofeqnvar:=tableXkernels(varlistk,y)
       if #kernelofeqnvar = 0 then
         return false
       for i in kernelofeqnvar repeat
          if member?(name(first kernels(i)),testList) then
            return true
       false

     tableXkernels(evar:RE,Z:S) : L RE ==
       kOfvar:=kernels(evar)
       listkOfvar:=[]::L RE
       for i in kOfvar repeat
          if not freeOf?(i::RE,Z) then
              listkOfvar:=cons(i::RE,listkOfvar)
       listkOfvar

     testTrig(eqnvar:RE,Z:S) : Boolean ==
       testList:=[sin , cos , tan , cot , sec , csc]::L S
       kernelofeqnvar:=tableXkernels(eqnvar,Z)
       if #kernelofeqnvar = 0 then
         return false
       for i in kernelofeqnvar repeat
          if not member?(name(first kernels(i)),testList) or _
             not testkernel( (first argument first kernels(i)) ,Z) then
            return false
       true


     testHTrig(eqnvar:RE,Z:S) : Boolean ==
       testList:=[sinh , cosh , tanh , coth , sech , csch]::L S
       kernelofeqnvar:=tableXkernels(eqnvar,Z)
       if #kernelofeqnvar = 0 then
         return false
       for i in kernelofeqnvar repeat
          if not member?(name(first kernels(i)),testList) or _
             not testkernel( (first argument first kernels(i)) ,Z) then
            return false
       true

     -- Auxiliary local function for use in funcinv.
     makeInterval(l:R):C INT F ==
       if R has complex and R has ConvertibleTo(C F) then
         map(interval$INT(F),convert(l)$R)$ComplexFunctions2(F,INT F)
       else
         error "This should never happen"

     funcinv(k:RE,l:RE) : Union(RE,"failed") ==
       is?(k,'sin)   => asin(l)
       is?(k,'cos)   => acos(l)
       is?(k,'tan)   => atan(l)
       is?(k,'cot)   => acot(l)
       is?(k,'sec)   =>
           l = 0 => "failed"
           asec(l)
       is?(k,'csc)   =>
           l = 0 => "failed"
           acsc(l)
       is?(k,'sinh)  => asinh(l)
       is?(k,'cosh)  => acosh(l)
       is?(k,'tanh)  => atanh(l)
       is?(k,'coth)  => acoth(l)
       is?(k,'sech)  => asech(l)
       is?(k,'csch)  => acsch(l)
       is?(k,'atan)  => tan(l)
       is?(k,'acot)  =>
           l = 0 => "failed"
           cot(l)
       is?(k,'asin)  => sin(l)
       is?(k,'acos)  => cos(l)
       is?(k,'asec)  => sec(l)
       is?(k,'acsc)  =>
           l = 0 => "failed"
           csc(l)
       is?(k,'asinh) => sinh(l)
       is?(k,'acosh) => cosh(l)
       is?(k,'atanh) => tanh(l)
       is?(k,'acoth) =>
           l = 0 => "failed"
           coth(l)
       is?(k,'asech) => sech(l)
       is?(k,'acsch) =>
           l = 0 => "failed"
           csch(l)
       is?(k,'exp)   =>
           l = 0 => "failed"
           simplifyingLog l
       is?(k,'log)   =>
         if R has complex and R has ConvertibleTo(C F) then
           -- We will check to see if the imaginary part lies in [-Pi,Pi)
           ze : Expression C INT F
           ze := map(makeInterval,l)$ExpressionFunctions2(R,C INT F)
           z : Union(C INT F,"failed") := retractIfCan ze
           z case "failed" => exp l
           im := imag z
           fpi : Float := pi()
           (-fpi < inf(im)) and (sup(im) <= fpi) => exp l
           "failed"
         else -- R not Complex or something which doesn't map to Complex Floats
           exp l 
       is?(k,'%power)   => 
            (t:=normalize(l)) = 0 => "failed"
            log t
       l

     import SystemSolvePackage(RE)

     ker2Poly(k:Kernel RE, lvar:L S):Polynomial RE ==
        member?(nm:=name k, lvar) => nm :: Polynomial RE
        k :: RE :: Polynomial RE

     smp2Poly(pol:SMP(R,Kernel RE), lvar:L S):Polynomial RE ==
        map(ker2Poly(#1, lvar),
           #1::RE::Polynomial RE, pol)$PolynomialCategoryLifting(
              IndexedExponents Kernel RE, Kernel RE, R, SMP(R, Kernel RE), 
                      Polynomial RE)

     makeFracPoly(expr:RE, lvar:L S):Fraction Polynomial RE ==
        smp2Poly(numer expr, lvar) / smp2Poly(denom expr, lvar)

     makeREpol(pol:Polynomial RE):RE ==
        lvar := variables pol
        lval : List RE := [v::RE for v in lvar]
        ground eval(pol,lvar,lval)

     makeRE(frac:Fraction Polynomial RE):RE ==
        makeREpol(numer frac)/makeREpol(denom frac)

     solve1Pol(pol:Polynomial RE, var: S, sol:L EQ RE):L L EQ RE ==
        repol := eval(makeREpol pol, sol)
        vsols := solve(repol, var)
        [cons(vsol, sol) for vsol in vsols]

     solve1Sys(plist:L Polynomial RE, lvar:L S):L L EQ RE ==
        rplist := reverse plist
        rlvar := reverse lvar
        sols : L L EQ RE := list(empty())
        for p in rplist for v in rlvar repeat
           sols := "append"/[solve1Pol(p,v,sol) for sol in sols]
        sols

@
The input
\begin{verbatim}
  solve(sinh(z)=cosh(z),z)
\end{verbatim}
generates the error (reported as bug \# 102):
\begin{verbatim}
 >> Error detected within library code:
    No identity element for reduce of empty list using operation append
\end{verbatim}
<<package SOLVETRA TransSolvePackage>>=

     solveList(lexpr:L RE, lvar:L S):L L EQ RE ==
        ans1 := solveRetract(lexpr, lvar)
        not(ans1 case "failed") => ans1 :: L L EQ RE
        lfrac:L Fraction Polynomial RE :=
           [makeFracPoly(expr, lvar) for expr in lexpr]
        trianglist := triangularSystems(lfrac, lvar)
--        "append"/[solve1Sys(plist, lvar) for plist in trianglist]
        l: L L L EQ RE := [solve1Sys(plist, lvar) for plist in trianglist]
        reduce(append, l, [])
        
     solve(leqs:L EQ RE, lvar:L S):L L EQ RE ==
        lexpr:L RE := [lhs(eq)-rhs(eq) for eq in leqs]
        solveList(lexpr, lvar)

--     solve(leqs:L EQ RE, lker:L Kernel RE):L L EQ RE ==
--        lexpr:L RE := [lhs(eq)-rhs(eq) for eq in leqs]
--        lvar :L S := [new()$S for k in lker]
--        lval :L RE := [kernel v for v in lvar]
--        nlexpr := [eval(expr,lker,lval) for expr in lexpr]
--        ans := solveList(nlexpr, lvar)
--        lker2 :L Kernel RE := [v::Kernel(RE) for v in lvar]
--        lval2 := [k::RE for k in lker]
--        [[map(eval(#1,lker2,lval2), neq) for neq in sol] for sol in ans]

@
\section{package SOLVESER TransSolvePackageService}
<<package SOLVESER TransSolvePackageService>>=
)abbrev package SOLVESER TransSolvePackageService
++ Author: W. Wiwianka
++ Date Created: Summer 1991
++ Change History: 9/91
++ Basic Operations: decomposeFunc, unvectorise
++ Related Constructors:
++ Keywords:
++ Description: This package finds the function func3 where  func1 and func2
++  are given and  func1 = func3(func2) .  If there is no solution then
++  function func1 will be returned.
++  An example would be  \spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and
++  \spad{func2:=2*X ::EXPR INT} convert them via univariate
++  to FRAC SUP EXPR INT and then the solution is \spad{func3:=X**3+X**2-X}
++  of type FRAC SUP EXPR INT
TransSolvePackageService(R) : Exports == Implementation where
   R   :   Join(IntegralDomain, OrderedSet)

   RE  ==> Expression R
   EQ  ==> Equation
   S   ==> Symbol
   V   ==> Variable
   L   ==> List
   SUP ==> SparseUnivariatePolynomial
   ACF      ==> AlgebraicallyClosedField()


   Exports == with

     decomposeFunc : ( Fraction SUP RE , Fraction SUP RE, Fraction SUP RE )  -> Fraction SUP RE
       ++ decomposeFunc(func1, func2, newvar)  returns a function  func3 where
       ++ func1 = func3(func2)  and expresses it in the new variable  newvar.
       ++ If there is no solution then func1 will be returned.
     unvectorise : ( Vector RE , Fraction SUP RE , Integer ) -> Fraction SUP RE
       ++ unvectorise(vect, var, n) returns
       ++ \spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where
       ++ vect  is the vector of the coefficients of the polynomail , var
       ++ the new variable and n the degree.


   Implementation == add
     import ACF
     import TranscendentalManipulations(R, RE)
     import ElementaryFunctionStructurePackage(R, RE)
     import SparseUnivariatePolynomial(R)
     import LinearSystemMatrixPackage(RE,Vector RE,Vector RE,Matrix RE)
     import HomogeneousAggregate(R)

        ---- Local Function Declarations ----

     subsSolve : ( SUP RE, NonNegativeInteger, SUP RE, SUP RE, Integer, Fraction SUP RE) -> Union(SUP RE , "failed" )
       --++ subsSolve(f, degf, g1, g2, m, h)


    -- exported functions


     unvectorise(vect:Vector RE, var:Fraction SUP RE,n:Integer) : Fraction SUP RE ==
       Z:=new()@Symbol
       polyvar: Fraction SUP RE :=0
       for i in 1..((n+1)::Integer) repeat
          vecti:=univariate(vect( i ),first kernels(Z::RE))
          polyvar:=polyvar + ( vecti )*( var )**( (n-i+1)::NonNegativeInteger )
       polyvar


     decomposeFunc(exprf:Fraction SUP RE , exprg:Fraction SUP RE, newH:Fraction SUP RE ) : Fraction SUP RE ==
       X:=new()@Symbol
       f1:=numer(exprf)
       f2:=denom(exprf)
       g1:=numer(exprg)
       g2:=denom(exprg)
       degF:=max(degree(numer(exprf)),degree(denom(exprf)))
       degG:=max(degree(g1),degree(g2))
       newF1,newF2 : Union(SUP RE, "failed")
       N:= degF exquo degG
       if not ( N case "failed" ) then
         m:=N::Integer
         newF1:=subsSolve(f1,degF,g1,g2,m,newH)
         if f2 = 1 then
           newF2:= 1 :: SUP RE
         else newF2:=subsSolve(f2,degF,g1,g2,m,newH)
         if ( not ( newF1 case "failed" ) ) and ( not ( newF2 case "failed" ) ) then
           newF:=newF1/newF2
         else return exprf
       else return exprf


    -- local functions


     subsSolve(F:SUP RE, DegF:NonNegativeInteger, G1:SUP RE, G2:SUP RE, M:Integer, HH: Fraction SUP RE) : Union(SUP RE , "failed" ) ==
       coeffmat:=new((DegF+1),1,0)@Matrix RE
       for i in 0..M repeat
          coeffmat:=horizConcat(coeffmat, (vectorise( ( ( G1**((M-i)::NonNegativeInteger) )*G2**i ), (DegF+1) )::Matrix RE) )
       vec:= vectorise(F,DegF+1)
       coeffma:=subMatrix(coeffmat,1,(DegF+1),2,(M+2))
       solvar:=solve(coeffma,vec)
       if not ( solvar.particular  case  "failed" ) then
         solvevarlist:=(solvar.particular)::Vector RE
         resul:= numer(unvectorise(solvevarlist,( HH ),M))
         resul
       else return "failed"

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2009, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package SOLVETRA TransSolvePackage>>
<<package SOLVESER TransSolvePackageService>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}