1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra taylor.spad}
\author{Clifton J. Williamson}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain ITAYLOR InnerTaylorSeries}
<<domain ITAYLOR InnerTaylorSeries>>=
)abbrev domain ITAYLOR InnerTaylorSeries
++ Author: Clifton J. Williamson
++ Date Created: 21 December 1989
++ Date Last Updated: 25 February 1989
++ Basic Operations:
++ Related Domains: UnivariateTaylorSeries(Coef,var,cen)
++ Also See:
++ AMS Classifications:
++ Keywords: stream, dense Taylor series
++ Examples:
++ References:
++ Description: Internal package for dense Taylor series.
++ This is an internal Taylor series type in which Taylor series
++ are represented by a \spadtype{Stream} of \spadtype{Ring} elements.
++ For univariate series, the \spad{Stream} elements are the Taylor
++ coefficients. For multivariate series, the \spad{n}th Stream element
++ is a form of degree n in the power series variables.
InnerTaylorSeries(Coef): Exports == Implementation where
Coef : Ring
I ==> Integer
NNI ==> NonNegativeInteger
ST ==> Stream Coef
STT ==> StreamTaylorSeriesOperations Coef
Exports ==> Ring with
coefficients: % -> Stream Coef
++\spad{coefficients(x)} returns a stream of ring elements.
++ When x is a univariate series, this is a stream of Taylor
++ coefficients. When x is a multivariate series, the
++ \spad{n}th element of the stream is a form of
++ degree n in the power series variables.
series: Stream Coef -> %
++\spad{series(s)} creates a power series from a stream of
++ ring elements.
++ For univariate series types, the stream s should be a stream
++ of Taylor coefficients. For multivariate series types, the
++ stream s should be a stream of forms the \spad{n}th element
++ of which is a
++ form of degree n in the power series variables.
pole?: % -> Boolean
++\spad{pole?(x)} tests if the series x has a pole.
++ Note: this is false when x is a Taylor series.
order: % -> NNI
++\spad{order(x)} returns the order of a power series x,
++ i.e. the degree of the first non-zero term of the series.
order: (%,NNI) -> NNI
++\spad{order(x,n)} returns the minimum of n and the order of x.
"*" : (Coef,%)->%
++\spad{c*x} returns the product of c and the series x.
"*" : (%,Coef)->%
++\spad{x*c} returns the product of c and the series x.
"*" : (%,Integer)->%
++\spad{x*i} returns the product of integer i and the series x.
if Coef has IntegralDomain then IntegralDomain
--++ An IntegralDomain provides 'exquo'
Implementation ==> add
Rep := Stream Coef
--% declarations
x,y: %
--% definitions
-- In what follows, we will be calling operations on Streams
-- which are NOT defined in the package Stream. Thus, it is
-- necessary to explicitly pass back and forth between Rep and %.
-- This will be done using the functions 'stream' and 'series'.
stream : % -> Stream Coef
stream x == x pretend Stream(Coef)
series st == st pretend %
0 == coerce(0)$STT
1 == coerce(1)$STT
x = y ==
-- tests if two power series are equal
-- difference must be a finite stream of zeroes of length <= n + 1,
-- where n = $streamCount$Lisp
st : ST := stream(x - y)
n : I := _$streamCount$Lisp
for i in 0..n repeat
empty? st => return true
frst st ~= 0 => return false
st := rst st
empty? st
coefficients x == stream x
x + y == stream(x) +$STT stream(y)
x - y == stream(x) -$STT stream(y)
(x:%) * (y:%) == stream(x) *$STT stream(y)
- x == -$STT (stream x)
(i:I) * (x:%) == (i::Coef) *$STT stream x
(x:%) * (i:I) == stream(x) *$STT (i::Coef)
(c:Coef) * (x:%) == c *$STT stream x
(x:%) * (c:Coef) == stream(x) *$STT c
recip x ==
(rec := recip$STT stream x) case "failed" => "failed"
series(rec :: ST)
if Coef has IntegralDomain then
x exquo y ==
(quot := stream(x) exquo$STT stream(y)) case "failed" => "failed"
series(quot :: ST)
x:% ** n:NNI ==
n = 0 => 1
expt(x,n :: PositiveInteger)$RepeatedSquaring(%)
characteristic() == characteristic()$Coef
pole? x == false
iOrder: (ST,NNI,NNI) -> NNI
iOrder(st,n,n0) ==
(n = n0) or (empty? st) => n0
zero? frst st => iOrder(rst st,n + 1,n0)
n
order(x,n) == iOrder(stream x,0,n)
iOrder2: (ST,NNI) -> NNI
iOrder2(st,n) ==
empty? st => error "order: series has infinite order"
zero? frst st => iOrder2(rst st,n + 1)
n
order x == iOrder2(stream x,0)
@
\section{domain UTS UnivariateTaylorSeries}
<<domain UTS UnivariateTaylorSeries>>=
)abbrev domain UTS UnivariateTaylorSeries
++ Author: Clifton J. Williamson
++ Date Created: 21 December 1989
++ Date Last Updated: 21 September 1993
++ Basic Operations:
++ Related Domains: UnivariateLaurentSeries(Coef,var,cen), UnivariatePuiseuxSeries(Coef,var,cen)
++ Also See:
++ AMS Classifications:
++ Keywords: dense, Taylor series
++ Examples:
++ References:
++ Description: Dense Taylor series in one variable
++ \spadtype{UnivariateTaylorSeries} is a domain representing Taylor
++ series in
++ one variable with coefficients in an arbitrary ring. The parameters
++ of the type specify the coefficient ring, the power series variable,
++ and the center of the power series expansion. For example,
++ \spadtype{UnivariateTaylorSeries}(Integer,x,3) represents
++ Taylor series in
++ \spad{(x - 3)} with \spadtype{Integer} coefficients.
UnivariateTaylorSeries(Coef,var,cen): Exports == Implementation where
Coef : Ring
var : Symbol
cen : Coef
I ==> Integer
NNI ==> NonNegativeInteger
P ==> Polynomial Coef
RN ==> Fraction Integer
ST ==> Stream
STT ==> StreamTaylorSeriesOperations Coef
TERM ==> Record(k:NNI,c:Coef)
UP ==> UnivariatePolynomial(var,Coef)
Exports ==> UnivariateTaylorSeriesCategory(Coef) with
coerce: UP -> %
++\spad{coerce(p)} converts a univariate polynomial p in the variable
++\spad{var} to a univariate Taylor series in \spad{var}.
univariatePolynomial: (%,NNI) -> UP
++\spad{univariatePolynomial(f,k)} returns a univariate polynomial
++ consisting of the sum of all terms of f of degree \spad{<= k}.
coerce: Variable(var) -> %
++\spad{coerce(var)} converts the series variable \spad{var} into a
++ Taylor series.
differentiate: (%,Variable(var)) -> %
++ \spad{differentiate(f(x),x)} computes the derivative of
++ \spad{f(x)} with respect to \spad{x}.
lagrange: % -> %
++\spad{lagrange(g(x))} produces the Taylor series for \spad{f(x)}
++ where \spad{f(x)} is implicitly defined as \spad{f(x) = x*g(f(x))}.
lambert: % -> %
++\spad{lambert(f(x))} returns \spad{f(x) + f(x^2) + f(x^3) + ...}.
++ This function is used for computing infinite products.
++ \spad{f(x)} should have zero constant coefficient.
++ If \spad{f(x)} is a Taylor series with constant term 1, then
++ \spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.
oddlambert: % -> %
++\spad{oddlambert(f(x))} returns \spad{f(x) + f(x^3) + f(x^5) + ...}.
++ \spad{f(x)} should have a zero constant coefficient.
++ This function is used for computing infinite products.
++ If \spad{f(x)} is a Taylor series with constant term 1, then
++ \spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.
evenlambert: % -> %
++\spad{evenlambert(f(x))} returns \spad{f(x^2) + f(x^4) + f(x^6) + ...}.
++ \spad{f(x)} should have a zero constant coefficient.
++ This function is used for computing infinite products.
++ If \spad{f(x)} is a Taylor series with constant term 1, then
++ \spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.
generalLambert: (%,I,I) -> %
++\spad{generalLambert(f(x),a,d)} returns \spad{f(x^a) + f(x^(a + d)) +
++ f(x^(a + 2 d)) + ... }. \spad{f(x)} should have zero constant
++ coefficient and \spad{a} and d should be positive.
revert: % -> %
++ \spad{revert(f(x))} returns a Taylor series \spad{g(x)} such that
++ \spad{f(g(x)) = g(f(x)) = x}. Series \spad{f(x)} should have constant
++ coefficient 0 and 1st order coefficient 1.
multisect: (I,I,%) -> %
++\spad{multisect(a,b,f(x))} selects the coefficients of
++ \spad{x^((a+b)*n+a)}, and changes this monomial to \spad{x^n}.
invmultisect: (I,I,%) -> %
++\spad{invmultisect(a,b,f(x))} substitutes \spad{x^((a+b)*n)}
++ for \spad{x^n} and multiples by \spad{x^b}.
if Coef has Algebra Fraction Integer then
integrate: (%,Variable(var)) -> %
++ \spad{integrate(f(x),x)} returns an anti-derivative of the power
++ series \spad{f(x)} with constant coefficient 0.
++ We may integrate a series when we can divide coefficients
++ by integers.
Implementation ==> InnerTaylorSeries(Coef) add
Rep := Stream Coef
--% creation and destruction of series
stream: % -> Stream Coef
stream x == x pretend Stream(Coef)
coerce(v:Variable(var)) ==
zero? cen => monomial(1,1)
monomial(1,1) + monomial(cen,0)
coerce(n:I) == n :: Coef :: %
coerce(r:Coef) == coerce(r)$STT
monomial(c,n) == monom(c,n)$STT
getExpon: TERM -> NNI
getExpon term == term.k
getCoef: TERM -> Coef
getCoef term == term.c
rec: (NNI,Coef) -> TERM
rec(expon,coef) == [expon,coef]
recs: (ST Coef,NNI) -> ST TERM
recs(st,n) == delay$ST(TERM)
empty? st => empty()
zero? (coef := frst st) => recs(rst st,n + 1)
concat(rec(n,coef),recs(rst st,n + 1))
terms x == recs(stream x,0)
recsToCoefs: (ST TERM,NNI) -> ST Coef
recsToCoefs(st,n) == delay
empty? st => empty()
term := frst st; expon := getExpon term
n = expon => concat(getCoef term,recsToCoefs(rst st,n + 1))
concat(0,recsToCoefs(st,n + 1))
series(st: ST TERM) == recsToCoefs(st,0)
stToPoly: (ST Coef,P,NNI,NNI) -> P
stToPoly(st,term,n,n0) ==
(n > n0) or (empty? st) => 0
frst(st) * term ** n + stToPoly(rst st,term,n + 1,n0)
polynomial(x,n) == stToPoly(stream x,(var :: P) - (cen :: P),0,n)
polynomial(x,n1,n2) ==
if n1 > n2 then (n1,n2) := (n2,n1)
stToPoly(rest(stream x,n1),(var :: P) - (cen :: P),n1,n2)
stToUPoly: (ST Coef,UP,NNI,NNI) -> UP
stToUPoly(st,term,n,n0) ==
(n > n0) or (empty? st) => 0
frst(st) * term ** n + stToUPoly(rst st,term,n + 1,n0)
univariatePolynomial(x,n) ==
stToUPoly(stream x,monomial(1,1)$UP - monomial(cen,0)$UP,0,n)
coerce(p:UP) ==
zero? p => 0
if not zero? cen then
p := p(monomial(1,1)$UP + monomial(cen,0)$UP)
st : ST Coef := empty()
oldDeg : NNI := degree(p) + 1
while not zero? p repeat
deg := degree p
delta := (oldDeg - deg - 1) :: NNI
for i in 1..delta repeat st := concat(0$Coef,st)
st := concat(leadingCoefficient p,st)
oldDeg := deg; p := reductum p
for i in 1..oldDeg repeat st := concat(0$Coef,st)
st
if Coef has coerce: Symbol -> Coef then
if Coef has "**": (Coef,NNI) -> Coef then
stToCoef: (ST Coef,Coef,NNI,NNI) -> Coef
stToCoef(st,term,n,n0) ==
(n > n0) or (empty? st) => 0
frst(st) * term ** n + stToCoef(rst st,term,n + 1,n0)
approximate(x,n) ==
stToCoef(stream x,(var :: Coef) - cen,0,n)
--% values
variable x == var
center s == cen
coefficient(x,n) ==
-- Cannot use elt! Should return 0 if stream doesn't have it.
u := stream x
while not empty? u and n > 0 repeat
u := rst u
n := (n - 1) :: NNI
empty? u or n ~= 0 => 0
frst u
elt(x:%,n:NNI) == coefficient(x,n)
--% functions
map(f,x) == map(f,x)$Rep
eval(x:%,r:Coef) == eval(stream x,r-cen)$STT
differentiate x == deriv(stream x)$STT
differentiate(x:%,v:Variable(var)) == differentiate x
if Coef has PartialDifferentialRing(Symbol) then
differentiate(x:%,s:Symbol) ==
(s = variable(x)) => differentiate x
map(differentiate(#1,s),x) - differentiate(center x,s)*differentiate(x)
multiplyCoefficients(f,x) == gderiv(f,stream x)$STT
lagrange x == lagrange(stream x)$STT
lambert x == lambert(stream x)$STT
oddlambert x == oddlambert(stream x)$STT
evenlambert x == evenlambert(stream x)$STT
generalLambert(x:%,a:I,d:I) == generalLambert(stream x,a,d)$STT
extend(x,n) == extend(x,n+1)$Rep
complete x == complete(x)$Rep
truncate(x,n) == first(stream x,n + 1)$Rep
truncate(x,n1,n2) ==
if n2 < n1 then (n1,n2) := (n2,n1)
m := (n2 - n1) :: NNI
st := first(rest(stream x,n1)$Rep,m + 1)$Rep
for i in 1..n1 repeat st := concat(0$Coef,st)
st
elt(x:%,y:%) == compose(stream x,stream y)$STT
revert x == revert(stream x)$STT
multisect(a,b,x) == multisect(a,b,stream x)$STT
invmultisect(a,b,x) == invmultisect(a,b,stream x)$STT
multiplyExponents(x,n) == invmultisect(n,0,x)
quoByVar x == (empty? x => 0; rst x)
if Coef has IntegralDomain then
unit? x == unit? coefficient(x,0)
if Coef has Field then
if Coef is RN then
(x:%) ** (s:Coef) == powern(s,stream x)$STT
else
(x:%) ** (s:Coef) == power(s,stream x)$STT
if Coef has Algebra Fraction Integer then
coerce(r:RN) == r :: Coef :: %
integrate x == integrate(0,stream x)$STT
integrate(x:%,v:Variable(var)) == integrate x
if Coef has integrate: (Coef,Symbol) -> Coef and _
Coef has variables: Coef -> List Symbol then
integrate(x:%,s:Symbol) ==
(s = variable(x)) => integrate x
not entry?(s,variables center x) => map(integrate(#1,s),x)
error "integrate: center is a function of variable of integration"
if Coef has TranscendentalFunctionCategory and _
Coef has PrimitiveFunctionCategory and _
Coef has AlgebraicallyClosedFunctionSpace Integer then
integrateWithOneAnswer: (Coef,Symbol) -> Coef
integrateWithOneAnswer(f,s) ==
res := integrate(f,s)$FunctionSpaceIntegration(I,Coef)
res case Coef => res :: Coef
first(res :: List Coef)
integrate(x:%,s:Symbol) ==
(s = variable(x)) => integrate x
not entry?(s,variables center x) =>
map(integrateWithOneAnswer(#1,s),x)
error "integrate: center is a function of variable of integration"
--% OutputForms
-- We use the default coerce: % -> OutputForm in UTSCAT&
@
\section{package UTS2 UnivariateTaylorSeriesFunctions2}
<<package UTS2 UnivariateTaylorSeriesFunctions2>>=
)abbrev package UTS2 UnivariateTaylorSeriesFunctions2
++ Author: Clifton J. Williamson
++ Date Created: 9 February 1990
++ Date Last Updated: 9 February 1990
++ Basic Operations:
++ Related Domains: UnivariateTaylorSeries(Coef1,var,cen)
++ Also See:
++ AMS Classifications:
++ Keywords: Taylor series, map
++ Examples:
++ References:
++ Description: Mapping package for univariate Taylor series.
++ This package allows one to apply a function to the coefficients of
++ a univariate Taylor series.
UnivariateTaylorSeriesFunctions2(Coef1,Coef2,UTS1,UTS2):_
Exports == Implementation where
Coef1 : Ring
Coef2 : Ring
UTS1 : UnivariateTaylorSeriesCategory Coef1
UTS2 : UnivariateTaylorSeriesCategory Coef2
ST2 ==> StreamFunctions2(Coef1,Coef2)
Exports ==> with
map: (Coef1 -> Coef2,UTS1) -> UTS2
++\spad{map(f,g(x))} applies the map f to the coefficients of
++ the Taylor series \spad{g(x)}.
Implementation ==> add
map(f,uts) == series map(f,coefficients uts)$ST2
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<domain ITAYLOR InnerTaylorSeries>>
<<domain UTS UnivariateTaylorSeries>>
<<package UTS2 UnivariateTaylorSeriesFunctions2>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|