1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
--Copyright (C) 2007, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical Algorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
)abbrev domain SYNTAX Syntax
++ Author: Gabriel Dos Reis
++ Date Created: November 10, 2007
++ Date Last Updated: December 05, 2007
++ Description: This domain provides a simple, general, and arguably
++ complete representation of Spad programs as objects of a term algebra
++ built from ground terms of type boolean, integers, foats, symbols,
++ and strings. This domain differs from InputForm in that it represents
++ any entity from a Spad program, not just expressions.
++ Related Constructors: Boolean, Integer, Float, symbol, String, SExpression.
++ See Also: SExpression.
++ Fixme: Provide direct support for boolean values, arbritrary
++ precision float point values.
Syntax(): Public == Private where
Public ==> CoercibleTo(OutputForm) with
convert: % -> SExpression
++ convert(s) returns the s-expression representation of a syntax.
convert: SExpression -> %
++ convert(s) converts an s-expression to syntax. Note, when `s'
++ is not an atom, it is expected that it designates a proper list,
++ e.g. a sequence of cons cell ending with nil.
coerce: Integer -> %
++ coerce(i) injects the integer value `i' into the Syntax domain
convert: % -> Integer
++ coerce(i) extracts the integer value `i' from the Syntax domain
coerce: DoubleFloat -> %
++ coerce(f) injects the float value `f' into the Syntax domain
convert: % -> DoubleFloat
++ convert(f) extracts the float value `f' from the Syntax domain
coerce: Symbol -> %
++ coerce(s) injects the symbol `s' into the Syntax domain.
convert: % -> Symbol
++ convert(s) extracts the symbol `s' from the Syntax domain.
coerce: String -> %
++ coerce(s) injects the string value `s' into the syntax domain
convert: % -> String
++ convert(s) extract the string value `s' from the syntax domain
buildSyntax: (Symbol, List %) -> %
++ buildSyntax(op, [a1, ..., an]) builds a syntax object for op(a1,...,an).
buildSyntax: (%, List %) -> %
++ buildSyntax(op, [a1, ..., an]) builds a syntax object for op(a1,...,an).
getOperator: % -> Union(Integer, DoubleFloat, Symbol, String, %)
++ getOperator(x) returns the operator, or tag, of the syntax `x'.
++ The return value is itself a syntax if `x' really is an
++ application of a function symbol as opposed to being an
++ atomic ground term.
getOperands: % -> List %
++ getOperands(x) returns the list of operands to the operator in `x'.
_case: (%, Domain) -> Boolean
++ x case t returns true if x really is of type t, e.g.
++ Integer, DoubleFloat, Symbol, String, or %.
Private ==> SExpression add
rep(x: %): SExpression ==
x pretend SExpression
per(x: SExpression): % ==
x pretend %
convert(x: %): SExpression ==
rep x
convert(x: SExpression): % ==
per x
coerce(i: Integer): % ==
i pretend %
convert(i: %): Integer ==
not integer? rep i => userError "invalid conversion target type"
i pretend Integer
coerce(f: DoubleFloat): % ==
f pretend %
convert(f: %): DoubleFloat ==
not float? rep f => userError "invalid conversion target type"
f pretend DoubleFloat
coerce(s: Symbol): % ==
s pretend %
convert(s: %): Symbol ==
not symbol? rep s => userError "invalid conversion target type"
s pretend Symbol
coerce(s: String): % ==
s pretend %
convert(s: %): String ==
not string? rep s => userError "invalid conversion target type"
s pretend String
buildSyntax(s: Symbol, l: List %): % ==
-- ??? ideally we should have overloaded operator `per' that convert
-- from list of syntax to syntax. But the compiler is at the
-- moment defective for non-exported overloaded operations.
cons(s::%, l) pretend %
buildSyntax(op: %, l: List %): % ==
cons(op, l) pretend %
getOperator x ==
atom? rep x => userError "atom as operand to getOperator"
s := car rep x
symbol? s => symbol s
integer? s => integer s
float? s => float s
string? s => string s
convert s
getOperands x ==
s := rep x
atom? s => []
[per t for t in destruct cdr s]
s case t ==
symbol? rep s => t is Symbol
integer? rep s => t is Integer
float? rep s => t is DoubleFloat
string? rep s => t is String
pair? rep s => t is %
false
|