aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/sups.spad.pamphlet
blob: 4a814d60c935e328582c7f32f7e6c7c6aa3a56a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra sups.spad}
\author{Clifton J. Williamson}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain ISUPS InnerSparseUnivariatePowerSeries}
<<domain ISUPS InnerSparseUnivariatePowerSeries>>=
)abbrev domain ISUPS InnerSparseUnivariatePowerSeries
++ Author: Clifton J. Williamson
++ Date Created: 28 October 1994
++ Date Last Updated: 9 March 1995
++ Basic Operations:
++ Related Domains: SparseUnivariateTaylorSeries, SparseUnivariateLaurentSeries
++   SparseUnivariatePuiseuxSeries
++ Also See:
++ AMS Classifications:
++ Keywords: sparse, series
++ Examples:
++ References:
++ Description: InnerSparseUnivariatePowerSeries is an internal domain
++   used for creating sparse Taylor and Laurent series.
InnerSparseUnivariatePowerSeries(Coef): Exports == Implementation where
  Coef  : Ring
  B    ==> Boolean
  COM  ==> OrderedCompletion Integer
  I    ==> Integer
  L    ==> List
  NNI  ==> NonNegativeInteger
  OUT  ==> OutputForm
  PI   ==> PositiveInteger
  REF  ==> Reference OrderedCompletion Integer
  RN   ==> Fraction Integer
  Term ==> Record(k:Integer,c:Coef)
  SG   ==> String
  ST   ==> Stream Term

  Exports ==> UnivariatePowerSeriesCategory(Coef,Integer) with
    makeSeries: (REF,ST) -> %
      ++ makeSeries(refer,str) creates a power series from the reference
      ++ \spad{refer} and the stream \spad{str}.
    getRef: % -> REF
      ++ getRef(f) returns a reference containing the order to which the
      ++ terms of f have been computed.
    getStream: % -> ST
      ++ getStream(f) returns the stream of terms representing the series f.
    series: ST -> %
      ++ series(st) creates a series from a stream of non-zero terms,
      ++ where a term is an exponent-coefficient pair.  The terms in the
      ++ stream should be ordered by increasing order of exponents.
    monomial?: % -> B
      ++ monomial?(f) tests if f is a single monomial.
    multiplyCoefficients: (I -> Coef,%) -> %
      ++ multiplyCoefficients(fn,f) returns the series
      ++ \spad{sum(fn(n) * an * x^n,n = n0..)},
      ++ where f is the series \spad{sum(an * x^n,n = n0..)}.
    iExquo: (%,%,B) -> Union(%,"failed")
      ++ iExquo(f,g,taylor?) is the quotient of the power series f and g.
      ++ If \spad{taylor?} is \spad{true}, then we must have
      ++ \spad{order(f) >= order(g)}.
    taylorQuoByVar: % -> %
      ++ taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)
      ++ returns \spad{a1 + a2 x + a3 x**2 + ...}
    iCompose: (%,%) -> %
      ++ iCompose(f,g) returns \spad{f(g(x))}.  This is an internal function
      ++ which should only be called for Taylor series \spad{f(x)} and
      ++ \spad{g(x)} such that the constant coefficient of \spad{g(x)} is zero.
    seriesToOutputForm: (ST,REF,Symbol,Coef,RN) -> OutputForm
      ++ seriesToOutputForm(st,refer,var,cen,r) prints the series
      ++ \spad{f((var - cen)^r)}.
    if Coef has Algebra Fraction Integer then
      integrate: % -> %
        ++ integrate(f(x)) returns an anti-derivative of the power series
        ++ \spad{f(x)} with constant coefficient 0.
        ++ Warning: function does not check for a term of degree -1.
      cPower: (%,Coef) -> %
        ++ cPower(f,r) computes \spad{f^r}, where f has constant coefficient 1.
        ++ For use when the coefficient ring is commutative.
      cRationalPower: (%,RN) -> %
        ++ cRationalPower(f,r) computes \spad{f^r}.
        ++ For use when the coefficient ring is commutative.
      cExp: % -> %
        ++ cExp(f) computes the exponential of the power series f.
        ++ For use when the coefficient ring is commutative.
      cLog: % -> %
        ++ cLog(f) computes the logarithm of the power series f.
        ++ For use when the coefficient ring is commutative.
      cSin: % -> %
        ++ cSin(f) computes the sine of the power series f.
        ++ For use when the coefficient ring is commutative.
      cCos: % -> %
        ++ cCos(f) computes the cosine of the power series f.
        ++ For use when the coefficient ring is commutative.
      cTan: % -> %
        ++ cTan(f) computes the tangent of the power series f.
        ++ For use when the coefficient ring is commutative.
      cCot: % -> %
        ++ cCot(f) computes the cotangent of the power series f.
        ++ For use when the coefficient ring is commutative.
      cSec: % -> %
        ++ cSec(f) computes the secant of the power series f.
        ++ For use when the coefficient ring is commutative.
      cCsc: % -> %
        ++ cCsc(f) computes the cosecant of the power series f.
        ++ For use when the coefficient ring is commutative.
      cAsin: % -> %
        ++ cAsin(f) computes the arcsine of the power series f.
        ++ For use when the coefficient ring is commutative.
      cAcos: % -> %
        ++ cAcos(f) computes the arccosine of the power series f.
        ++ For use when the coefficient ring is commutative.
      cAtan: % -> %
        ++ cAtan(f) computes the arctangent of the power series f.
        ++ For use when the coefficient ring is commutative.
      cAcot: % -> %
        ++ cAcot(f) computes the arccotangent of the power series f.
        ++ For use when the coefficient ring is commutative.
      cAsec: % -> %
        ++ cAsec(f) computes the arcsecant of the power series f.
        ++ For use when the coefficient ring is commutative.
      cAcsc: % -> %
        ++ cAcsc(f) computes the arccosecant of the power series f.
        ++ For use when the coefficient ring is commutative.
      cSinh: % -> %
        ++ cSinh(f) computes the hyperbolic sine of the power series f.
        ++ For use when the coefficient ring is commutative.
      cCosh: % -> %
        ++ cCosh(f) computes the hyperbolic cosine of the power series f.
        ++ For use when the coefficient ring is commutative.
      cTanh: % -> %
        ++ cTanh(f) computes the hyperbolic tangent of the power series f.
        ++ For use when the coefficient ring is commutative.
      cCoth: % -> %
        ++ cCoth(f) computes the hyperbolic cotangent of the power series f.
        ++ For use when the coefficient ring is commutative.
      cSech: % -> %
        ++ cSech(f) computes the hyperbolic secant of the power series f.
        ++ For use when the coefficient ring is commutative.
      cCsch: % -> %
        ++ cCsch(f) computes the hyperbolic cosecant of the power series f.
        ++ For use when the coefficient ring is commutative.
      cAsinh: % -> %
        ++ cAsinh(f) computes the inverse hyperbolic sine of the power
        ++ series f.  For use when the coefficient ring is commutative.
      cAcosh: % -> %
        ++ cAcosh(f) computes the inverse hyperbolic cosine of the power
        ++ series f.  For use when the coefficient ring is commutative.
      cAtanh: % -> %
        ++ cAtanh(f) computes the inverse hyperbolic tangent of the power
        ++ series f.  For use when the coefficient ring is commutative.
      cAcoth: % -> %
        ++ cAcoth(f) computes the inverse hyperbolic cotangent of the power
        ++ series f.  For use when the coefficient ring is commutative.
      cAsech: % -> %
        ++ cAsech(f) computes the inverse hyperbolic secant of the power
        ++ series f.  For use when the coefficient ring is commutative.
      cAcsch: % -> %
        ++ cAcsch(f) computes the inverse hyperbolic cosecant of the power
        ++ series f.  For use when the coefficient ring is commutative.

  Implementation ==> add
    import REF

    Rep := Record(%ord: REF,%str: Stream Term)
    -- when the value of 'ord' is n, this indicates that all non-zero
    -- terms of order up to and including n have been computed;
    -- when 'ord' is plusInfinity, all terms have been computed;
    -- lazy evaluation of 'str' has the side-effect of modifying the value
    -- of 'ord'

--% Local functions

    makeTerm:        (Integer,Coef) -> Term
    getCoef:         Term -> Coef
    getExpon:        Term -> Integer
    iSeries:         (ST,REF) -> ST
    iExtend:         (ST,COM,REF) -> ST
    iTruncate0:      (ST,REF,REF,COM,I,I) -> ST
    iTruncate:       (%,COM,I) -> %
    iCoefficient:    (ST,Integer) -> Coef
    iOrder:          (ST,COM,REF) -> I
    iMap1:           ((Coef,I) -> Coef,I -> I,B,ST,REF,REF,Integer) -> ST
    iMap2:           ((Coef,I) -> Coef,I -> I,B,%) -> %
    iPlus1:          ((Coef,Coef) -> Coef,ST,REF,ST,REF,REF,I) -> ST
    iPlus2:          ((Coef,Coef) -> Coef,%,%) -> %
    productByTerm:   (Coef,I,ST,REF,REF,I) -> ST
    productLazyEval: (ST,REF,ST,REF,COM) -> Void
    iTimes:          (ST,REF,ST,REF,REF,I) -> ST
    iDivide:         (ST,REF,ST,REF,Coef,I,REF,I) -> ST
    divide:          (%,I,%,I,Coef) -> %
    compose0:        (ST,REF,ST,REF,I,%,%,I,REF,I) -> ST
    factorials?:     () -> Boolean
    termOutput:      (RN,Coef,OUT) -> OUT
    showAll?:        () -> Boolean

--% macros

    makeTerm(exp,coef) == [exp,coef]
    getCoef term == term.c
    getExpon term == term.k

    makeSeries(refer,x) == [refer,x]
    getRef ups == ups.%ord
    getStream ups == ups.%str

--% creation and destruction of series

    monomial(coef,expon) ==
      nix : ST := empty()
      st :=
        zero? coef => nix
        concat(makeTerm(expon,coef),nix)
      makeSeries(ref plusInfinity(),st)

    monomial? ups == (not empty? getStream ups) and (empty? rst getStream ups)

    coerce(n:I)    == n :: Coef :: %
    coerce(r:Coef) == monomial(r,0)

    iSeries(x,refer) ==
      empty? x => (setref(refer,plusInfinity()); empty())
      setref(refer,(getExpon frst x) :: COM)
      concat(frst x,iSeries(rst x,refer))

    series(x:ST) ==
      empty? x => 0
      n := getExpon frst x; refer := ref(n :: COM)
      makeSeries(refer,iSeries(x,refer))

--% values

    characteristic == characteristic$Coef

    0 == monomial(0,0)
    1 == monomial(1,0)

    iExtend(st,n,refer) ==
      (deref refer) < n =>
        explicitlyEmpty? st => (setref(refer,plusInfinity()); st)
        explicitEntries? st => iExtend(rst st,n,refer)
        iExtend(lazyEvaluate st,n,refer)
      st

    extend(x,n) == (iExtend(getStream x,n :: COM,getRef x); x)
    complete x  == (iExtend(getStream x,plusInfinity(),getRef x); x)

    iTruncate0(x,xRefer,refer,minExp,maxExp,n) == delay
      explicitlyEmpty? x => (setref(refer,plusInfinity()); empty())
      nn := n :: COM
      while (deref xRefer) < nn repeat lazyEvaluate x
      explicitEntries? x =>
        (nx := getExpon(xTerm := frst x)) > maxExp =>
          (setref(refer,plusInfinity()); empty())
        setref(refer,nx :: COM)
        (nx :: COM) >= minExp =>
          concat(makeTerm(nx,getCoef xTerm),_
                 iTruncate0(rst x,xRefer,refer,minExp,maxExp,nx + 1))
        iTruncate0(rst x,xRefer,refer,minExp,maxExp,nx + 1)
      -- can't have deref(xRefer) = infty unless all terms have been computed
      degr := retract(deref xRefer)@I
      setref(refer,degr :: COM)
      iTruncate0(x,xRefer,refer,minExp,maxExp,degr + 1)

    iTruncate(ups,minExp,maxExp) ==
      x := getStream ups; xRefer := getRef ups
      explicitlyEmpty? x => 0
      explicitEntries? x =>
        deg := getExpon frst x
        refer := ref((deg - 1) :: COM)
        makeSeries(refer,iTruncate0(x,xRefer,refer,minExp,maxExp,deg))
      -- can't have deref(xRefer) = infty unless all terms have been computed
      degr := retract(deref xRefer)@I
      refer := ref(degr :: COM)
      makeSeries(refer,iTruncate0(x,xRefer,refer,minExp,maxExp,degr + 1))

    truncate(ups,n) == iTruncate(ups,minusInfinity(),n)
    truncate(ups,n1,n2) ==
      if n1 > n2 then (n1,n2) := (n2,n1)
      iTruncate(ups,n1 :: COM,n2)

    iCoefficient(st,n) ==
      explicitEntries? st =>
        term := frst st
        (expon := getExpon term) > n => 0
        expon = n => getCoef term
        iCoefficient(rst st,n)
      0

    coefficient(x,n)   == (extend(x,n); iCoefficient(getStream x,n))
    elt(x:%,n:Integer) == coefficient(x,n)

    iOrder(st,n,refer) ==
      explicitlyEmpty? st => error "order: series has infinite order"
      explicitEntries? st =>
        ((r := getExpon frst st) :: COM) >= n => retract(n)@Integer
        r
      -- can't have deref(xRefer) = infty unless all terms have been computed
      degr := retract(deref refer)@I
      (degr :: COM) >= n => retract(n)@Integer
      iOrder(lazyEvaluate st,n,refer)

    order x    == iOrder(getStream x,plusInfinity(),getRef x)
    order(x,n) == iOrder(getStream x,n :: COM,getRef x)

    terms x    == getStream x

--% predicates

    zero? ups ==
      x := getStream ups; ref := getRef ups
      whatInfinity(n := deref ref) = 1 => explicitlyEmpty? x
      count : NNI := _$streamCount$Lisp
      for i in 1..count repeat
        explicitlyEmpty? x => return true
        explicitEntries? x => return false
        lazyEvaluate x
      false

    ups1 = ups2 == zero?(ups1 - ups2)

--% arithmetic

    iMap1(cFcn,eFcn,check?,x,xRefer,refer,n) == delay
      -- when this function is called, all terms in 'x' of order < n have been
      -- computed and we compute the eFcn(n)th order coefficient of the result
      explicitlyEmpty? x => (setref(refer,plusInfinity()); empty())
      -- if terms in 'x' up to order n have not been computed,
      -- apply lazy evaluation
      nn := n :: COM
      while (deref xRefer) < nn repeat lazyEvaluate x
      -- 'x' may now be empty: retest
      explicitlyEmpty? x => (setref(refer,plusInfinity()); empty())
      -- must have nx >= n
      explicitEntries? x =>
        xCoef := getCoef(xTerm := frst x); nx := getExpon xTerm
        newCoef := cFcn(xCoef,nx); m := eFcn nx
        setref(refer,m :: COM)
        not check? =>
          concat(makeTerm(m,newCoef),_
                 iMap1(cFcn,eFcn,check?,rst x,xRefer,refer,nx + 1))
        zero? newCoef => iMap1(cFcn,eFcn,check?,rst x,xRefer,refer,nx + 1)
        concat(makeTerm(m,newCoef),_
               iMap1(cFcn,eFcn,check?,rst x,xRefer,refer,nx + 1))
      -- can't have deref(xRefer) = infty unless all terms have been computed
      degr := retract(deref xRefer)@I
      setref(refer,eFcn(degr) :: COM)
      iMap1(cFcn,eFcn,check?,x,xRefer,refer,degr + 1)

    iMap2(cFcn,eFcn,check?,ups) ==
      -- 'eFcn' must be a strictly increasing function,
      -- i.e. i < j => eFcn(i) < eFcn(j)
      xRefer := getRef ups; x := getStream ups
      explicitlyEmpty? x => 0
      explicitEntries? x =>
        deg := getExpon frst x
        refer := ref(eFcn(deg - 1) :: COM)
        makeSeries(refer,iMap1(cFcn,eFcn,check?,x,xRefer,refer,deg))
      -- can't have deref(xRefer) = infty unless all terms have been computed
      degr := retract(deref xRefer)@I
      refer := ref(eFcn(degr) :: COM)
      makeSeries(refer,iMap1(cFcn,eFcn,check?,x,xRefer,refer,degr + 1))

    map(fcn,x) == iMap2(fcn(#1),#1,true,x)
    differentiate x == iMap2(#2 * #1,#1 - 1,true,x)
    multiplyCoefficients(f,x) == iMap2(f(#2) * #1,#1,true,x)
    multiplyExponents(x,n) == iMap2(#1,n * #1,false,x)

    iPlus1(op,x,xRefer,y,yRefer,refer,n) == delay
      -- when this function is called, all terms in 'x' and 'y' of order < n
      -- have been computed and we are computing the nth order coefficient of
      -- the result; note the 'op' is either '+' or '-'
      explicitlyEmpty? x => iMap1(op(0,#1),#1,false,y,yRefer,refer,n)
      explicitlyEmpty? y => iMap1(op(#1,0),#1,false,x,xRefer,refer,n)
      -- if terms up to order n have not been computed,
      -- apply lazy evaluation
      nn := n :: COM
      while (deref xRefer) < nn repeat lazyEvaluate x
      while (deref yRefer) < nn repeat lazyEvaluate y
      -- 'x' or 'y' may now be empty: retest
      explicitlyEmpty? x => iMap1(op(0,#1),#1,false,y,yRefer,refer,n)
      explicitlyEmpty? y => iMap1(op(#1,0),#1,false,x,xRefer,refer,n)
      -- must have nx >= n, ny >= n
      -- both x and y have explicit terms
      explicitEntries?(x) and explicitEntries?(y) =>
        xCoef := getCoef(xTerm := frst x); nx := getExpon xTerm
        yCoef := getCoef(yTerm := frst y); ny := getExpon yTerm
        nx = ny =>
          setref(refer,nx :: COM)
          zero? (coef := op(xCoef,yCoef)) =>
            iPlus1(op,rst x,xRefer,rst y,yRefer,refer,nx + 1)
          concat(makeTerm(nx,coef),_
                 iPlus1(op,rst x,xRefer,rst y,yRefer,refer,nx + 1))
        nx < ny =>
          setref(refer,nx :: COM)
          concat(makeTerm(nx,op(xCoef,0)),_
                 iPlus1(op,rst x,xRefer,y,yRefer,refer,nx + 1))
        setref(refer,ny :: COM)
        concat(makeTerm(ny,op(0,yCoef)),_
               iPlus1(op,x,xRefer,rst y,yRefer,refer,ny + 1))
      -- y has no term of degree n
      explicitEntries? x =>
        xCoef := getCoef(xTerm := frst x); nx := getExpon xTerm
        -- can't have deref(yRefer) = infty unless all terms have been computed
        (degr := retract(deref yRefer)@I) < nx =>
          setref(refer,deref yRefer)
          iPlus1(op,x,xRefer,y,yRefer,refer,degr + 1)
        setref(refer,nx :: COM)
        concat(makeTerm(nx,op(xCoef,0)),_
               iPlus1(op,rst x,xRefer,y,yRefer,refer,nx + 1))
      -- x has no term of degree n
      explicitEntries? y =>
        yCoef := getCoef(yTerm := frst y); ny := getExpon yTerm
        -- can't have deref(xRefer) = infty unless all terms have been computed
        (degr := retract(deref xRefer)@I) < ny =>
          setref(refer,deref xRefer)
          iPlus1(op,x,xRefer,y,yRefer,refer,degr + 1)
        setref(refer,ny :: COM)
        concat(makeTerm(ny,op(0,yCoef)),_
               iPlus1(op,x,xRefer,rst y,yRefer,refer,ny + 1))
      -- neither x nor y has a term of degree n
      setref(refer,xyRef := min(deref xRefer,deref yRefer))
      -- can't have xyRef = infty unless all terms have been computed
      iPlus1(op,x,xRefer,y,yRefer,refer,retract(xyRef)@I + 1)

    iPlus2(op,ups1,ups2) ==
      xRefer := getRef ups1; x := getStream ups1
      xDeg :=
        explicitlyEmpty? x => return map(op(0$Coef,#1),ups2)
        explicitEntries? x => (getExpon frst x) - 1
        -- can't have deref(xRefer) = infty unless all terms have been computed
        retract(deref xRefer)@I
      yRefer := getRef ups2; y := getStream ups2
      yDeg :=
        explicitlyEmpty? y => return map(op(#1,0$Coef),ups1)
        explicitEntries? y => (getExpon frst y) - 1
        -- can't have deref(yRefer) = infty unless all terms have been computed
        retract(deref yRefer)@I
      deg := min(xDeg,yDeg); refer := ref(deg :: COM)
      makeSeries(refer,iPlus1(op,x,xRefer,y,yRefer,refer,deg + 1))

    x + y == iPlus2(#1 + #2,x,y)
    x - y == iPlus2(#1 - #2,x,y)
    - y   == iMap2(_-#1,#1,false,y)

    -- gives correct defaults for I, NNI and PI
    n:I   * x:% == (zero? n => 0; map(n * #1,x))
    n:NNI * x:% == (zero? n => 0; map(n * #1,x))
    n:PI  * x:% == (zero? n => 0; map(n * #1,x))

    productByTerm(coef,expon,x,xRefer,refer,n) ==
      iMap1(coef * #1,#1 + expon,true,x,xRefer,refer,n)

    productLazyEval(x,xRefer,y,yRefer,nn) ==
      explicitlyEmpty?(x) or explicitlyEmpty?(y) => void()
      explicitEntries? x =>
        explicitEntries? y => void()
        xDeg := (getExpon frst x) :: COM
        while (xDeg + deref(yRefer)) < nn repeat lazyEvaluate y

      explicitEntries? y =>
        yDeg := (getExpon frst y) :: COM
        while (yDeg + deref(xRefer)) < nn repeat lazyEvaluate x

      lazyEvaluate x
      -- if x = y, then y may now have explicit entries
      if lazy? y then lazyEvaluate y
      productLazyEval(x,xRefer,y,yRefer,nn)

    iTimes(x,xRefer,y,yRefer,refer,n) == delay
      -- when this function is called, we are computing the nth order
      -- coefficient of the product
      productLazyEval(x,xRefer,y,yRefer,n :: COM)
      explicitlyEmpty?(x) or explicitlyEmpty?(y) =>
        (setref(refer,plusInfinity()); empty())
      -- must have nx + ny >= n
      explicitEntries?(x) and explicitEntries?(y) =>
        xCoef := getCoef(xTerm := frst x); xExpon := getExpon xTerm
        yCoef := getCoef(yTerm := frst y); yExpon := getExpon yTerm
        expon := xExpon + yExpon
        setref(refer,expon :: COM)
        scRefer := ref(expon :: COM)
        scMult := productByTerm(xCoef,xExpon,rst y,yRefer,scRefer,yExpon + 1)
        prRefer := ref(expon :: COM)
        pr := iTimes(rst x,xRefer,y,yRefer,prRefer,expon + 1)
        sm := iPlus1(#1 + #2,scMult,scRefer,pr,prRefer,refer,expon + 1)
        zero?(coef := xCoef * yCoef) => sm
        concat(makeTerm(expon,coef),sm)
      explicitEntries? x =>
        xExpon := getExpon frst x
        -- can't have deref(yRefer) = infty unless all terms have been computed
        degr := retract(deref yRefer)@I
        setref(refer,(xExpon + degr) :: COM)
        iTimes(x,xRefer,y,yRefer,refer,xExpon + degr + 1)
      explicitEntries? y =>
        yExpon := getExpon frst y
        -- can't have deref(xRefer) = infty unless all terms have been computed
        degr := retract(deref xRefer)@I
        setref(refer,(yExpon + degr) :: COM)
        iTimes(x,xRefer,y,yRefer,refer,yExpon + degr + 1)
      -- can't have deref(xRefer) = infty unless all terms have been computed
      xDegr := retract(deref xRefer)@I
      yDegr := retract(deref yRefer)@I
      setref(refer,(xDegr + yDegr) :: COM)
      iTimes(x,xRefer,y,yRefer,refer,xDegr + yDegr + 1)

    ups1:% * ups2:% ==
      xRefer := getRef ups1; x := getStream ups1
      xDeg :=
        explicitlyEmpty? x => return 0
        explicitEntries? x => (getExpon frst x) - 1
        -- can't have deref(xRefer) = infty unless all terms have been computed
        retract(deref xRefer)@I
      yRefer := getRef ups2; y := getStream ups2
      yDeg :=
        explicitlyEmpty? y => return 0
        explicitEntries? y => (getExpon frst y) - 1
        -- can't have deref(yRefer) = infty unless all terms have been computed
        retract(deref yRefer)@I
      deg := xDeg + yDeg + 1; refer := ref(deg :: COM)
      makeSeries(refer,iTimes(x,xRefer,y,yRefer,refer,deg + 1))

    iDivide(x,xRefer,y,yRefer,rym,m,refer,n) == delay
      -- when this function is called, we are computing the nth order
      -- coefficient of the result
      explicitlyEmpty? x => (setref(refer,plusInfinity()); empty())
      -- if terms up to order n - m have not been computed,
      -- apply lazy evaluation
      nm := (n + m) :: COM
      while (deref xRefer) < nm repeat lazyEvaluate x
      -- 'x' may now be empty: retest
      explicitlyEmpty? x => (setref(refer,plusInfinity()); empty())
      -- must have nx >= n + m
      explicitEntries? x =>
        newCoef := getCoef(xTerm := frst x) * rym; nx := getExpon xTerm
        prodRefer := ref(nx :: COM)
        prod := productByTerm(-newCoef,nx - m,rst y,yRefer,prodRefer,1)
        sumRefer := ref(nx :: COM)
        sum := iPlus1(#1 + #2,rst x,xRefer,prod,prodRefer,sumRefer,nx + 1)
        setref(refer,(nx - m) :: COM); term := makeTerm(nx - m,newCoef)
        concat(term,iDivide(sum,sumRefer,y,yRefer,rym,m,refer,nx - m + 1))
      -- can't have deref(xRefer) = infty unless all terms have been computed
      degr := retract(deref xRefer)@I
      setref(refer,(degr - m) :: COM)
      iDivide(x,xRefer,y,yRefer,rym,m,refer,degr - m + 1)

    divide(ups1,deg1,ups2,deg2,r) ==
      xRefer := getRef ups1; x := getStream ups1
      yRefer := getRef ups2; y := getStream ups2
      refer := ref((deg1 - deg2) :: COM)
      makeSeries(refer,iDivide(x,xRefer,y,yRefer,r,deg2,refer,deg1 - deg2 + 1))

    iExquo(ups1,ups2,taylor?) ==
      xRefer := getRef ups1; x := getStream ups1
      yRefer := getRef ups2; y := getStream ups2
      n : I := 0
      -- try to find first non-zero term in y
      -- give up after 1000 lazy evaluations
      while not explicitEntries? y repeat
        explicitlyEmpty? y => return "failed"
        lazyEvaluate y
        (n := n + 1) > 1000 => return "failed"
      yCoef := getCoef(yTerm := frst y); ny := getExpon yTerm
      (ry := recip yCoef) case "failed" => "failed"
      nn := ny :: COM
      if taylor? then
        while (deref(xRefer) < nn) repeat
          explicitlyEmpty? x => return 0
          explicitEntries? x => return "failed"
          lazyEvaluate x
      -- check if ups2 is a monomial
      empty? rst y => iMap2(#1 * (ry :: Coef),#1 - ny,false,ups1)
      explicitlyEmpty? x => 0
      nx :=
        explicitEntries? x =>
          ((deg := getExpon frst x) < ny) and taylor? => return "failed"
          deg - 1
        -- can't have deref(xRefer) = infty unless all terms have been computed
        retract(deref xRefer)@I
      divide(ups1,nx,ups2,ny,ry :: Coef)

    taylorQuoByVar ups ==
      iMap2(#1,#1 - 1,false,ups - monomial(coefficient(ups,0),0))

    compose0(x,xRefer,y,yRefer,yOrd,y1,yn0,n0,refer,n) == delay
      -- when this function is called, we are computing the nth order
      -- coefficient of the composite
      explicitlyEmpty? x => (setref(refer,plusInfinity()); empty())
      -- if terms in 'x' up to order n have not been computed,
      -- apply lazy evaluation
      nn := n :: COM; yyOrd := yOrd :: COM
      while (yyOrd * deref(xRefer)) < nn repeat lazyEvaluate x
      explicitEntries? x =>
        xCoef := getCoef(xTerm := frst x); n1 := getExpon xTerm
        zero? n1 =>
          setref(refer,n1 :: COM)
          concat(makeTerm(n1,xCoef),_
                 compose0(rst x,xRefer,y,yRefer,yOrd,y1,yn0,n0,refer,n1 + 1))
        yn1 := yn0 * y1 ** ((n1 - n0) :: NNI)
        z := getStream yn1; zRefer := getRef yn1
        degr := yOrd * n1; prodRefer := ref((degr - 1) :: COM)
        prod := iMap1(xCoef * #1,#1,true,z,zRefer,prodRefer,degr)
        coRefer := ref((degr + yOrd - 1) :: COM)
        co := compose0(rst x,xRefer,y,yRefer,yOrd,y1,yn1,n1,coRefer,degr + yOrd)
        setref(refer,(degr - 1) :: COM)
        iPlus1(#1 + #2,prod,prodRefer,co,coRefer,refer,degr)
      -- can't have deref(xRefer) = infty unless all terms have been computed
      degr := yOrd * (retract(deref xRefer)@I + 1)
      setref(refer,(degr - 1) :: COM)
      compose0(x,xRefer,y,yRefer,yOrd,y1,yn0,n0,refer,degr)

    iCompose(ups1,ups2) ==
      x := getStream ups1; xRefer := getRef ups1
      y := getStream ups2; yRefer := getRef ups2
      -- try to compute the order of 'ups2'
      n : I := _$streamCount$Lisp
      for i in 1..n while not explicitEntries? y repeat
        explicitlyEmpty? y => return coefficient(ups1,0) :: %
        lazyEvaluate y
      explicitlyEmpty? y => coefficient(ups1,0) :: %
      yOrd : I :=
        explicitEntries? y => getExpon frst y
        retract(deref yRefer)@I
      compRefer := ref((-1) :: COM)
      makeSeries(compRefer,_
                 compose0(x,xRefer,y,yRefer,yOrd,ups2,1,0,compRefer,0))

    if Coef has Algebra Fraction Integer then

      integrate x == iMap2(1/(#2 + 1) * #1,#1 + 1,true,x)

--% Fixed point computations

      Ys ==> Y$ParadoxicalCombinatorsForStreams(Term)

      integ0: (ST,REF,REF,I) -> ST
      integ0(x,intRef,ansRef,n) == delay
        nLess1 := (n - 1) :: COM
        while (deref intRef) < nLess1 repeat lazyEvaluate x
        explicitlyEmpty? x => (setref(ansRef,plusInfinity()); empty())
        explicitEntries? x =>
          xCoef := getCoef(xTerm := frst x); nx := getExpon xTerm
          setref(ansRef,(n1 := (nx + 1)) :: COM)
          concat(makeTerm(n1,inv(n1 :: RN) * xCoef),_
                 integ0(rst x,intRef,ansRef,n1))
        -- can't have deref(intRef) = infty unless all terms have been computed
        degr := retract(deref intRef)@I; setref(ansRef,(degr + 1) :: COM)
        integ0(x,intRef,ansRef,degr + 2)

      integ1: (ST,REF,REF) -> ST
      integ1(x,intRef,ansRef) == integ0(x,intRef,ansRef,1)

      lazyInteg: (Coef,() -> ST,REF,REF) -> ST
      lazyInteg(a,xf,intRef,ansRef) ==
        ansStr : ST := integ1(delay xf,intRef,ansRef)
        concat(makeTerm(0,a),ansStr)

      cPower(f,r) ==
        -- computes f^r.  f should have constant coefficient 1.
        fp := differentiate f
        fInv := iExquo(1,f,false) :: %; y := r * fp * fInv
        yRef := getRef y; yStr := getStream y
        intRef := ref((-1) :: COM); ansRef := ref(0 :: COM)
        ansStr := Ys lazyInteg(1,iTimes(#1,ansRef,yStr,yRef,intRef,0),_
                                 intRef,ansRef)
        makeSeries(ansRef,ansStr)

      iExp: (%,Coef) -> %
      iExp(f,cc) ==
        -- computes exp(f).  cc = exp coefficient(f,0)
        fp := differentiate f
        fpRef := getRef fp; fpStr := getStream fp
        intRef := ref((-1) :: COM); ansRef := ref(0 :: COM)
        ansStr := Ys lazyInteg(cc,iTimes(#1,ansRef,fpStr,fpRef,intRef,0),_
                                  intRef,ansRef)
        makeSeries(ansRef,ansStr)

      sincos0: (Coef,Coef,L ST,REF,REF,ST,REF,ST,REF) -> L ST
      sincos0(sinc,cosc,list,sinRef,cosRef,fpStr,fpRef,fpStr2,fpRef2) ==
        sinStr := first list; cosStr := second list
        prodRef1 := ref((-1) :: COM); prodRef2 := ref((-1) :: COM)
        prodStr1 := iTimes(cosStr,cosRef,fpStr,fpRef,prodRef1,0)
        prodStr2 := iTimes(sinStr,sinRef,fpStr2,fpRef2,prodRef2,0)
        [lazyInteg(sinc,prodStr1,prodRef1,sinRef),_
         lazyInteg(cosc,prodStr2,prodRef2,cosRef)]

      iSincos: (%,Coef,Coef,I) -> Record(%sin: %, %cos: %)
      iSincos(f,sinc,cosc,sign) ==
        fp := differentiate f
        fpRef := getRef fp; fpStr := getStream fp
        fp2 := (one? sign => fp; -fp)
        fpRef2 := getRef fp2; fpStr2 := getStream fp2
        sinRef := ref(0 :: COM); cosRef := ref(0 :: COM)
        sincos :=
          Ys(sincos0(sinc,cosc,#1,sinRef,cosRef,fpStr,fpRef,fpStr2,fpRef2),2)
        sinStr := (zero? sinc => rst first sincos; first sincos)
        cosStr := (zero? cosc => rst second sincos; second sincos)
        [makeSeries(sinRef,sinStr),makeSeries(cosRef,cosStr)]

      tan0: (Coef,ST,REF,ST,REF,I) -> ST
      tan0(cc,ansStr,ansRef,fpStr,fpRef,sign) ==
        sqRef := ref((-1) :: COM)
        sqStr := iTimes(ansStr,ansRef,ansStr,ansRef,sqRef,0)
        one : % := 1; oneStr := getStream one; oneRef := getRef one
        yRef := ref((-1) :: COM)
        yStr : ST :=
          one? sign => iPlus1(#1 + #2,oneStr,oneRef,sqStr,sqRef,yRef,0)
          iPlus1(#1 - #2,oneStr,oneRef,sqStr,sqRef,yRef,0)
        intRef := ref((-1) :: COM)
        lazyInteg(cc,iTimes(yStr,yRef,fpStr,fpRef,intRef,0),intRef,ansRef)

      iTan: (%,%,Coef,I) -> %
      iTan(f,fp,cc,sign) ==
        -- computes the tangent (and related functions) of f.
        fpRef := getRef fp; fpStr := getStream fp
        ansRef := ref(0 :: COM)
        ansStr := Ys tan0(cc,#1,ansRef,fpStr,fpRef,sign)
        zero? cc => makeSeries(ansRef,rst ansStr)
        makeSeries(ansRef,ansStr)

--% Error Reporting

      TRCONST : SG := "series expansion involves transcendental constants"
      NPOWERS : SG := "series expansion has terms of negative degree"
      FPOWERS : SG := "series expansion has terms of fractional degree"
      MAYFPOW : SG := "series expansion may have terms of fractional degree"
      LOGS : SG := "series expansion has logarithmic term"
      NPOWLOG : SG :=
         "series expansion has terms of negative degree or logarithmic term"
      NOTINV : SG := "leading coefficient not invertible"

--% Rational powers and transcendental functions

      orderOrFailed : % -> Union(I,"failed")
      orderOrFailed uts ==
      -- returns the order of x or "failed"
      -- if -1 is returned, the series is identically zero
        x := getStream uts
        for n in 0..1000 repeat
          explicitlyEmpty? x => return -1
          explicitEntries? x => return getExpon frst x
          lazyEvaluate x
        "failed"

      RATPOWERS : Boolean := Coef has "**": (Coef,RN) -> Coef
      TRANSFCN  : Boolean := Coef has TranscendentalFunctionCategory

      cRationalPower(uts,r) ==
        (ord0 := orderOrFailed uts) case "failed" =>
          error "**: series with many leading zero coefficients"
        order := ord0 :: I
        (n := order exquo denom(r)) case "failed" =>
          error "**: rational power does not exist"
        cc := coefficient(uts,order)
        (ccInv := recip cc) case "failed" => error concat("**: ",NOTINV)
        ccPow :=
          one? cc => cc
          one? denom r =>
            not negative?(num := numer r) => cc ** (num :: NNI)
            (ccInv :: Coef) ** ((-num) :: NNI)
          RATPOWERS => cc ** r
          error "** rational power of coefficient undefined"
        uts1 := (ccInv :: Coef) * uts
        uts2 := uts1 * monomial(1,-order)
        monomial(ccPow,(n :: I) * numer(r)) * cPower(uts2,r :: Coef)

      cExp uts ==
        zero?(cc := coefficient(uts,0)) => iExp(uts,1)
        TRANSFCN => iExp(uts,exp cc)
        error concat("exp: ",TRCONST)

      cLog uts ==
        zero?(cc := coefficient(uts,0)) =>
          error "log: constant coefficient should not be 0"
        one? cc => integrate(differentiate(uts) * (iExquo(1,uts,true) :: %))
        TRANSFCN =>
          y := iExquo(1,uts,true) :: %
          (log(cc) :: %) + integrate(y * differentiate(uts))
        error concat("log: ",TRCONST)

      sincos: % -> Record(%sin: %, %cos: %)
      sincos uts ==
        zero?(cc := coefficient(uts,0)) => iSincos(uts,0,1,-1)
        TRANSFCN => iSincos(uts,sin cc,cos cc,-1)
        error concat("sincos: ",TRCONST)

      cSin uts == sincos(uts).%sin
      cCos uts == sincos(uts).%cos

      cTan uts ==
        zero?(cc := coefficient(uts,0)) => iTan(uts,differentiate uts,0,1)
        TRANSFCN => iTan(uts,differentiate uts,tan cc,1)
        error concat("tan: ",TRCONST)

      cCot uts ==
        zero? uts => error "cot: cot(0) is undefined"
        zero?(cc := coefficient(uts,0)) => error error concat("cot: ",NPOWERS)
        TRANSFCN => iTan(uts,-differentiate uts,cot cc,1)
        error concat("cot: ",TRCONST)

      cSec uts ==
        zero?(cc := coefficient(uts,0)) => iExquo(1,cCos uts,true) :: %
        TRANSFCN =>
          cosUts := cCos uts
          zero? coefficient(cosUts,0) => error concat("sec: ",NPOWERS)
          iExquo(1,cosUts,true) :: %
        error concat("sec: ",TRCONST)

      cCsc uts ==
        zero? uts => error "csc: csc(0) is undefined"
        TRANSFCN =>
          sinUts := cSin uts
          zero? coefficient(sinUts,0) => error concat("csc: ",NPOWERS)
          iExquo(1,sinUts,true) :: %
        error concat("csc: ",TRCONST)

      cAsin uts ==
        zero?(cc := coefficient(uts,0)) =>
          integrate(cRationalPower(1 - uts*uts,-1/2) * differentiate(uts))
        TRANSFCN =>
          x := 1 - uts * uts
          cc = 1 or cc = -1 =>
            -- compute order of 'x'
            (ord := orderOrFailed x) case "failed" =>
              error concat("asin: ",MAYFPOW)
            (order := ord :: I) = -1 => return asin(cc) :: %
            odd? order => error concat("asin: ",FPOWERS)
            c0 := asin(cc) :: %
            c0 + integrate(cRationalPower(x,-1/2) * differentiate(uts))
          c0 := asin(cc) :: %
          c0 + integrate(cRationalPower(x,-1/2) * differentiate(uts))
        error concat("asin: ",TRCONST)

      cAcos uts ==
        zero? uts =>
          TRANSFCN => acos(0)$Coef :: %
          error concat("acos: ",TRCONST)
        TRANSFCN =>
          x := 1 - uts * uts
          cc := coefficient(uts,0)
          cc = 1 or cc = -1 =>
            -- compute order of 'x'
            (ord := orderOrFailed x) case "failed" =>
              error concat("acos: ",MAYFPOW)
            (order := ord :: I) = -1 => return acos(cc) :: %
            odd? order => error concat("acos: ",FPOWERS)
            c0 := acos(cc) :: %
            c0 + integrate(-cRationalPower(x,-1/2) * differentiate(uts))
          c0 := acos(cc) :: %
          c0 + integrate(-cRationalPower(x,-1/2) * differentiate(uts))
        error concat("acos: ",TRCONST)

      cAtan uts ==
        zero?(cc := coefficient(uts,0)) =>
          y := iExquo(1,(1 :: %) + uts*uts,true) :: %
          integrate(y * (differentiate uts))
        TRANSFCN =>
          (y := iExquo(1,(1 :: %) + uts*uts,true)) case "failed" =>
            error concat("atan: ",LOGS)
          (atan(cc) :: %) + integrate((y :: %) * (differentiate uts))
        error concat("atan: ",TRCONST)

      cAcot uts ==
        TRANSFCN =>
          (y := iExquo(1,(1 :: %) + uts*uts,true)) case "failed" =>
            error concat("acot: ",LOGS)
          cc := coefficient(uts,0)
          (acot(cc) :: %) + integrate(-(y :: %) * (differentiate uts))
        error concat("acot: ",TRCONST)

      cAsec uts ==
        zero?(cc := coefficient(uts,0)) =>
          error "asec: constant coefficient should not be 0"
        TRANSFCN =>
          x := uts * uts - 1
          y :=
            cc = 1 or cc = -1 =>
              -- compute order of 'x'
              (ord := orderOrFailed x) case "failed" =>
                error concat("asec: ",MAYFPOW)
              (order := ord :: I) = -1 => return asec(cc) :: %
              odd? order => error concat("asec: ",FPOWERS)
              cRationalPower(x,-1/2) * differentiate(uts)
            cRationalPower(x,-1/2) * differentiate(uts)
          (z := iExquo(y,uts,true)) case "failed" =>
            error concat("asec: ",NOTINV)
          (asec(cc) :: %) + integrate(z :: %)
        error concat("asec: ",TRCONST)

      cAcsc uts ==
        zero?(cc := coefficient(uts,0)) =>
          error "acsc: constant coefficient should not be 0"
        TRANSFCN =>
          x := uts * uts - 1
          y :=
            cc = 1 or cc = -1 =>
              -- compute order of 'x'
              (ord := orderOrFailed x) case "failed" =>
                error concat("acsc: ",MAYFPOW)
              (order := ord :: I) = -1 => return acsc(cc) :: %
              odd? order => error concat("acsc: ",FPOWERS)
              -cRationalPower(x,-1/2) * differentiate(uts)
            -cRationalPower(x,-1/2) * differentiate(uts)
          (z := iExquo(y,uts,true)) case "failed" =>
            error concat("asec: ",NOTINV)
          (acsc(cc) :: %) + integrate(z :: %)
        error concat("acsc: ",TRCONST)

      sinhcosh: % -> Record(%sinh: %, %cosh: %)
      sinhcosh uts ==
        zero?(cc := coefficient(uts,0)) =>
          tmp := iSincos(uts,0,1,1)
          [tmp.%sin,tmp.%cos]
        TRANSFCN =>
          tmp := iSincos(uts,sinh cc,cosh cc,1)
          [tmp.%sin,tmp.%cos]
        error concat("sinhcosh: ",TRCONST)

      cSinh uts == sinhcosh(uts).%sinh
      cCosh uts == sinhcosh(uts).%cosh

      cTanh uts ==
        zero?(cc := coefficient(uts,0)) => iTan(uts,differentiate uts,0,-1)
        TRANSFCN => iTan(uts,differentiate uts,tanh cc,-1)
        error concat("tanh: ",TRCONST)

      cCoth uts ==
        tanhUts := cTanh uts
        zero? tanhUts => error "coth: coth(0) is undefined"
        zero? coefficient(tanhUts,0) => error concat("coth: ",NPOWERS)
        iExquo(1,tanhUts,true) :: %

      cSech uts ==
        coshUts := cCosh uts
        zero? coefficient(coshUts,0) => error concat("sech: ",NPOWERS)
        iExquo(1,coshUts,true) :: %

      cCsch uts ==
        sinhUts := cSinh uts
        zero? coefficient(sinhUts,0) => error concat("csch: ",NPOWERS)
        iExquo(1,sinhUts,true) :: %

      cAsinh uts ==
        x := 1 + uts * uts
        zero?(cc := coefficient(uts,0)) => cLog(uts + cRationalPower(x,1/2))
        TRANSFCN =>
          (ord := orderOrFailed x) case "failed" =>
            error concat("asinh: ",MAYFPOW)
          (order := ord :: I) = -1 => return asinh(cc) :: %
          odd? order => error concat("asinh: ",FPOWERS)
          -- the argument to 'log' must have a non-zero constant term
          cLog(uts + cRationalPower(x,1/2))
        error concat("asinh: ",TRCONST)

      cAcosh uts ==
        zero? uts =>
          TRANSFCN => acosh(0)$Coef :: %
          error concat("acosh: ",TRCONST)
        TRANSFCN =>
          cc := coefficient(uts,0); x := uts*uts - 1
          cc = 1 or cc = -1 =>
            -- compute order of 'x'
            (ord := orderOrFailed x) case "failed" =>
              error concat("acosh: ",MAYFPOW)
            (order := ord :: I) = -1 => return acosh(cc) :: %
            odd? order => error concat("acosh: ",FPOWERS)
            -- the argument to 'log' must have a non-zero constant term
            cLog(uts + cRationalPower(x,1/2))
          cLog(uts + cRationalPower(x,1/2))
        error concat("acosh: ",TRCONST)

      cAtanh uts ==
        half := inv(2 :: RN) :: Coef
        zero?(cc := coefficient(uts,0)) =>
          half * (cLog(1 + uts) - cLog(1 - uts))
        TRANSFCN =>
          cc = 1 or cc = -1 => error concat("atanh: ",LOGS)
          half * (cLog(1 + uts) - cLog(1 - uts))
        error concat("atanh: ",TRCONST)

      cAcoth uts ==
        zero? uts =>
          TRANSFCN => acoth(0)$Coef :: %
          error concat("acoth: ",TRCONST)
        TRANSFCN =>
          cc := coefficient(uts,0); half := inv(2 :: RN) :: Coef
          cc = 1 or cc = -1 => error concat("acoth: ",LOGS)
          half * (cLog(uts + 1) - cLog(uts - 1))
        error concat("acoth: ",TRCONST)

      cAsech uts ==
        zero? uts => error "asech: asech(0) is undefined"
        TRANSFCN =>
          zero?(cc := coefficient(uts,0)) =>
            error concat("asech: ",NPOWLOG)
          x := 1 - uts * uts
          cc = 1 or cc = -1 =>
            -- compute order of 'x'
            (ord := orderOrFailed x) case "failed" =>
              error concat("asech: ",MAYFPOW)
            (order := ord :: I) = -1 => return asech(cc) :: %
            odd? order => error concat("asech: ",FPOWERS)
            (utsInv := iExquo(1,uts,true)) case "failed" =>
              error concat("asech: ",NOTINV)
            cLog((1 + cRationalPower(x,1/2)) * (utsInv :: %))
          (utsInv := iExquo(1,uts,true)) case "failed" =>
            error concat("asech: ",NOTINV)
          cLog((1 + cRationalPower(x,1/2)) * (utsInv :: %))
        error concat("asech: ",TRCONST)

      cAcsch uts ==
        zero? uts => error "acsch: acsch(0) is undefined"
        TRANSFCN =>
          zero?(cc := coefficient(uts,0)) => error concat("acsch: ",NPOWLOG)
          x := uts * uts + 1
          -- compute order of 'x'
          (ord := orderOrFailed x) case "failed" =>
            error concat("acsc: ",MAYFPOW)
          (order := ord :: I) = -1 => return acsch(cc) :: %
          odd? order => error concat("acsch: ",FPOWERS)
          (utsInv := iExquo(1,uts,true)) case "failed" =>
            error concat("acsch: ",NOTINV)
          cLog((1 + cRationalPower(x,1/2)) * (utsInv :: %))
        error concat("acsch: ",TRCONST)

--% Output forms

    -- check a global Lisp variable
    factorials?() == false

    termOutput(k,c,vv) ==
    -- creates a term c * vv ** k
      k = 0 => c :: OUT
      mon := (k = 1 => vv; vv ** (k :: OUT))
--       if factorials?() and k > 1 then
--         c := factorial(k)$IntegerCombinatoricFunctions * c
--         mon := mon / hconcat(k :: OUT,"!" :: OUT)
      c = 1 => mon
      c = -1 => -mon
      (c :: OUT) * mon

    -- check a global Lisp variable
    showAll?() == true

    seriesToOutputForm(st,refer,var,cen,r) ==
      vv :=
        zero? cen => var :: OUT
        paren(var :: OUT - cen :: OUT)
      l : L OUT := empty()
      while explicitEntries? st repeat
        term := frst st
        l := concat(termOutput(getExpon(term) * r,getCoef term,vv),l)
        st := rst st
      l :=
        explicitlyEmpty? st => l
        (deg := retractIfCan(deref refer)@Union(I,"failed")) case I =>
          concat(prefix("O" :: OUT,[vv ** ((((deg :: I) + 1) * r) :: OUT)]),l)
        l
      empty? l => (0$Coef) :: OUT
      reduce("+",reverse! l)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain ISUPS InnerSparseUnivariatePowerSeries>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}