aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/stream.spad.pamphlet
blob: 4dd872f25d53abac8cf9fcb3acf5211f855e2508 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra stream.spad}
\author{Clifton J. Williamson, William Burge, Stephen M. Watt}
\maketitle

\begin{abstract}
\end{abstract}

\tableofcontents
\eject

\section{category LZSTAGG LazyStreamAggregate}
<<category LZSTAGG LazyStreamAggregate>>=
import Type
import Boolean
import NonNegativeInteger
)abbrev category LZSTAGG LazyStreamAggregate
++ Category of streams with lazy evaluation
++ Author: Clifton J. Williamson
++ Date Created: 22 November 1989
++ Date Last Updated: 20 July 1990
++ Keywords: stream, infinite list, infinite sequence
++ Description:
++ LazyStreamAggregate is the category of streams with lazy
++ evaluation.  It is understood that the function 'empty?' will
++ cause lazy evaluation if necessary to determine if there are
++ entries.  Functions which call 'empty?', e.g. 'first' and 'rest',
++ will also cause lazy evaluation if necessary.

LazyStreamAggregate(S:Type): Category == StreamAggregate(S) with
  remove: (S -> Boolean,%) -> %
    ++ remove(f,st) returns a stream consisting of those elements of stream
    ++ st which do not satisfy the predicate f.
    ++ Note: \spad{remove(f,st) = [x for x in st | not f(x)]}.
  select: (S -> Boolean,%) -> %
    ++ select(f,st) returns a stream consisting of those elements of stream
    ++ st satisfying the predicate f.
    ++ Note: \spad{select(f,st) = [x for x in st | f(x)]}.
  explicitEntries?: % -> Boolean
    ++ explicitEntries?(s) returns true if the stream s has
    ++ explicitly computed entries, and false otherwise.
  explicitlyEmpty?: % -> Boolean
    ++ explicitlyEmpty?(s) returns true if the stream is an
    ++ (explicitly) empty stream.
    ++ Note: this is a null test which will not cause lazy evaluation.
  lazy?: % -> Boolean
    ++ lazy?(s) returns true if the first node of the stream s
    ++ is a lazy evaluation mechanism which could produce an
    ++ additional entry to s.
  lazyEvaluate: % -> %
    ++ lazyEvaluate(s) causes one lazy evaluation of stream s.
    ++ Caution: the first node must be a lazy evaluation mechanism
    ++ (satisfies \spad{lazy?(s) = true}) as there is no error check.
    ++ Note: a call to this function may
    ++ or may not produce an explicit first entry
  frst: % -> S
    ++ frst(s) returns the first element of stream s.
    ++ Caution: this function should only be called after a \spad{empty?} test
    ++ has been made since there no error check.
  rst: % -> %
    ++ rst(s) returns a pointer to the next node of stream s.
    ++ Caution: this function should only be called after a \spad{empty?} test
    ++ has been made since there no error check.
  numberOfComputedEntries: % -> NonNegativeInteger
    ++ numberOfComputedEntries(st) returns the number of explicitly
    ++ computed entries of stream st which exist immediately prior to the time
    ++ this function is called.
  extend: (%,Integer) -> %
    ++ extend(st,n) causes entries to be computed, if necessary,
    ++ so that 'st' will have at least 'n' explicit entries or so
    ++ that all entries of 'st' will be computed if 'st' is finite
    ++ with length <= n.
  complete: % -> %
    ++ complete(st) causes all entries of 'st' to be computed.
    ++ this function should only be called on streams which are
    ++ known to be finite.

 add

  MIN ==> 1  -- minimal stream index

  I   ==> Integer
  NNI ==> NonNegativeInteger
  L   ==> List
  U   ==> UniversalSegment Integer

  indexx?            : (Integer,%) -> Boolean
  cycleElt           : % -> Union(%,"failed")
  computeCycleLength : % -> NNI
  computeCycleEntry  : (%,%) -> %

--% SETCAT functions

  if S has SetCategory then

    x = y ==
      eq?(x,y) => true
      explicitlyFinite? x and explicitlyFinite? y =>
        entries x = entries y
      explicitEntries? x and explicitEntries? y =>
        frst x = frst y and %peq(rst x,rst y)$Foreign(Builtin)
      -- treat cyclic streams
      false

--% HOAGG functions

  --null x == empty? x

  less?(x,n) ==
    n = 0    => false
    empty? x => true
    less?(rst x,(n-1) :: NNI)

  more?(x,n) ==
    empty? x => false
    n = 0    => true
    more?(rst x,(n-1) :: NNI)

  size?(x,n) ==
    empty? x => n = 0
    size?(rst x,(n-1) :: NNI)

--% FINAGG functions
  if % has FiniteAggregate S then
    # x ==
      -- error if stream is not finite
      y := x
      for i in 0.. repeat
        explicitlyEmpty? y  => return i
        lazy? y => error "#: infinite stream"
        y := rst y
        if odd? i then x := rst x
        eq?(x,y) => error "#: infinite stream"

    any?(f,x) ==
      -- error message only when x is a stream with lazy
      -- evaluation and f(s) = false for all stream elements
      -- 's' which have been computed when the function is
      -- called
      y := x
      for i in 0.. repeat
        explicitlyEmpty? y  => return false
        lazy? y => error "any?: infinite stream"
        f frst y => return true
        y := rst y
        if odd? i then x := rst x
        eq?(x,y) => return false

    every?(f,x) ==
      -- error message only when x is a stream with lazy
      -- evaluation and f(s) = true for all stream elements
      -- 's' which have been computed when the function is
      -- called
      y := x
      for i in 0.. repeat
        explicitlyEmpty? y => return true
        lazy? y => error "every?: infinite stream"
        not f frst y => return false
        y := rst y
        if odd? i then x := rst x
        eq?(x,y) => return true

--  following ops count and member? are only exported if $ has FiniteAggregate S

--  count(f:S -> Boolean,x:%) ==
--    -- error if stream is not finite
--    count : NNI := 0
--    y := x
--    for i in 0.. repeat
--      explicitlyEmpty? y  => return count
--      lazy? y => error "count: infinite stream"
--      if f frst y then count := count + 1
--      y := rst y
--      if odd? i then x := rst x
--      eq?(x,y) => error "count: infinite stream"


--  if S has SetCategory then

--      count(s:S,x:%) == count(#1 = s,x)
--        -- error if stream is not finite

--    member?(s,x) ==
--      -- error message only when x is a stream with lazy
--      -- evaluation and 's' is not among the stream elements
--      -- which have been computed when the function is called
--      y := x
--      for i in 0.. repeat
--        explicitlyEmpty? y  => return false
--        lazy? y => error "member?: infinite stream"
--        frst y = s => return true
--        y := rst y
--        if odd? i then x := rst x
--        eq?(x,y) => return false

    entries x ==
      -- returns a list of elements which have been computed
      -- error if infinite
      y := x
      l : L S := empty()
      for i in 0.. repeat
        explicitlyEmpty? y  => return reverse! l
        lazy? y => error "infinite stream"
        l := concat(frst y,l)
        y := rst y
        if odd? i then x := rst x
        eq?(x,y) => error "infinite stream"

--% CNAGG functions

  construct l ==
    empty? l => empty()
    concat(first l, construct rest l)

  --entries x ==
    -- returns a list of the stream elements
    -- error if the stream is not finite
    --members x

--% ELTAGG functions

  elt(x:%,n:I) ==
    n < MIN or empty? x => error "elt: no such element"
    n = MIN => frst x
    elt(rst x,n - 1)

  elt(x:%,n:I,s:S) ==
    n < MIN or empty? x => s
    n = MIN => frst x
    elt(rst x,n - 1)

--% IXAGG functions

-- following assumes % has FiniteAggregate S and S has SetCategory
--  entry?(s,x) ==
--    -- error message only when x is a stream with lazy
--    -- evaluation and 's' is not among the stream elements
--    -- which have been computed when the function is called
--    member?(s,x)

  --entries x ==
    -- error if the stream is not finite
    --members x

  indexx?(n,x) ==
    empty? x => false
    n = MIN => true
    indexx?(n-1,rst x)

  index?(n,x) ==
    -- returns 'true' iff 'n' is the index of an entry which
    -- may or may not have been computed when the function is
    -- called
    -- additional entries are computed if necessary
    n < MIN => false
    indexx?(n,x)

  indices x ==
    -- error if stream is not finite
    y := x
    l : L I := empty()
    for i in MIN.. repeat
      explicitlyEmpty? y  => return reverse! l
      lazy? y => error "indices: infinite stream"
      l := concat(i,l)
      y := rst y
      if odd? i then x := rst x
      eq?(x,y) => error "indices: infinite stream"

  maxIndex x ==
    -- error if stream is not finite
    empty? x =>
      error "maxIndex: no maximal index for empty stream"
    y := rst x
    for i in MIN.. repeat
      explicitlyEmpty? y  => return i
      lazy? y => error "maxIndex: infinite stream"
      y := rst y
      if odd? i then x := rst x
      eq?(x,y) => error "maxIndex: infinite stream"

  minIndex x ==
    empty? x => error "minIndex: no minimal index for empty stream"
    MIN

--% LNAGG functions

  delete(x:%,n:I) ==
  -- non-destructive
    not index?(n,x) => error "delete: index out of range"
    concat(first(x,(n - MIN) :: NNI), rest(x,(n - MIN + 1) :: NNI))

  delete(x:%,seg:U) ==
    low := lo seg
    hasHi seg =>
      high := hi seg
      high < low => copy x
      (not index?(low,x)) or (not index?(high,x)) =>
        error "delete: index out of range"
      concat(first(x,(low - MIN) :: NNI),rest(x,(high - MIN + 1) :: NNI))
    not index?(low,x) => error "delete: index out of range"
    first(x,(low - MIN) :: NNI)

  elt(x:%,seg:U) ==
    low := lo seg
    hasHi seg =>
      high := hi seg
      high < low => empty()
      (not index?(low,x)) or (not index?(high,x)) =>
        error "elt: index out of range"
      first(rest(x,(low - MIN) :: NNI),(high - low + 1) :: NNI)
    not index?(low,x) => error "elt: index out of range"
    rest(x,(low - MIN) :: NNI)

  insert(s:S,x:%,n:I) ==
    not index?(n,x) => error "insert: index out of range"
    nn := (n - MIN) :: NNI
    concat([first(x,nn), concat(s, empty()), rest(x,nn)])

  insert(y:%,x:%,n:I) ==
    not index?(n,x) => error "insert: index out of range"
    nn := (n - MIN) :: NNI
    concat([first(x,nn), y, rest(x,nn)])

--% RCAGG functions

  cycleElt x == cycleElt(x)$CyclicStreamTools(S,%)

  cyclic? x ==
    cycleElt(x) case "failed" => false
    true

  if S has SetCategory then
    child?(x,y) ==
      empty? y => error "child: no children"
      x = rst y

  children x ==
    empty? x => error "children: no children"
    [rst x]

  distance(x,z) ==
    y := x
    for i in 0.. repeat
      eq?(y,z) => return i
      (explicitlyEmpty? y) or (lazy? y) =>
        error "distance: 2nd arg not a descendent of the 1st"
      y := rst y
      if odd? i then x := rst x
      eq?(x,y) =>
        error "distance: 2nd arg not a descendent of the 1st"

  if S has SetCategory then
    node?(z,x) ==
      -- error message only when x is a stream with lazy
      -- evaluation and 'y' is not a node of 'x'
      -- which has been computed when the function is called
      y := x
      for i in 0.. repeat
        z = y => return true
        explicitlyEmpty? y => return false
        lazy? y => error "node?: infinite stream"
        y := rst y
        if odd? i then x := rst x
        eq?(x,y) => return false

  nodes x ==
    y := x
    l : L % := []
    for i in 0.. repeat
      explicitlyEmpty? y => return reverse! l
      lazy? y => error "nodes: infinite stream"
      l := concat(y,l)
      y := rst y
      if odd? i then x := rst x
      eq?(x,y) => error "nodes: infinite stream"
    l -- @#$%^& compiler

  leaf? x == empty? rest x

  value x == first x

--% URAGG functions

  computeCycleLength cycElt ==
    computeCycleLength(cycElt)$CyclicStreamTools(S,%)

  computeCycleEntry(x,cycElt) ==
    computeCycleEntry(x,cycElt)$CyclicStreamTools(S,%)

  cycleEntry x ==
    cycElt := cycleElt x
    cycElt case "failed" =>
      error "cycleEntry: non-cyclic stream"
    computeCycleEntry(x,cycElt::%)

  cycleLength x ==
    cycElt := cycleElt x
    cycElt case "failed" =>
      error "cycleLength: non-cyclic stream"
    computeCycleLength(cycElt::%)

  cycleTail x ==
    cycElt := cycleElt x
    cycElt case "failed" =>
      error "cycleTail: non-cyclic stream"
    y := x := computeCycleEntry(x,cycElt::%)
    z := rst x
    repeat
      eq?(x,z) => return y
      y := z ; z := rst z

  elt(x,"first") == first x

  first(x,n) ==
  -- former name: take
    n = 0 or empty? x => empty()
    concat(frst x, first(rst x,(n-1) :: NNI))

  rest x ==
    empty? x => error "Can't take the rest of an empty stream."
    rst x

  elt(x,"rest") == rest x

  rest(x,n) ==
  -- former name: drop
    n = 0 or empty? x => x
    rest(rst x,(n-1) :: NNI)

  last x ==
    -- error if stream is not finite
    empty? x => error "last: empty stream"
    y1 := x
    y2 := rst x
    for i in 0.. repeat
      explicitlyEmpty? y2 => return frst y1
      lazy? y2 => error "last: infinite stream"
      y1 := y2
      y2 := rst y2
      if odd? i then x := rst x
      eq?(x,y2) => error "last: infinite stream"

  if % has FiniteAggregate S then -- # is only defined for finite aggregates
    last(x,n) ==
      possiblyInfinite? x => error "last: infinite stream"
      m := # x
      m < n => error "last: index out of range"
      copy rest(x,(m-n)::NNI)

  elt(x,"last") == last x

  tail x ==
    -- error if stream is not finite
    empty? x => error "tail: empty stream"
    y1 := x
    y2 := rst x
    for i in 0.. repeat
      explicitlyEmpty? y2 => return y1
      lazy? y2 => error "tail: infinite stream"
      y1 := y2
      y2 := rst y2
      if odd? i then x := rst x
      eq?(x,y2) => error "tail: infinite stream"

--% STAGG functions

  possiblyInfinite? x ==
    y := x
    for i in 0.. repeat
      explicitlyEmpty? y  => return false
      lazy? y => return true
      if odd? i then x := rst x
      y := rst y
      eq?(x,y) => return true

  explicitlyFinite? x == not possiblyInfinite? x

--% LZSTAGG functions

  extend(x,n) ==
    y := x
    for i in 1..n while not empty? y repeat y := rst y
    x

  complete x ==
    y := x
    while not empty? y repeat y := rst y
    x

@

\section{package CSTTOOLS CyclicStreamTools}

<<package CSTTOOLS CyclicStreamTools>>=
import Type
import NonNegativeInteger
import LazyStreamAggregate
)abbrev package CSTTOOLS CyclicStreamTools
++ Functions for dealing with cyclic streams
++ Author: Clifton J. Williamson
++ Date Created: 5 December 1989
++ Date Last Updated: 5 December 1989
++ Keywords: stream, cyclic
++ Description:
++ This package provides tools for working with cyclic streams.
CyclicStreamTools(S,ST): Exports == Implementation where
  S  : Type
  ST : LazyStreamAggregate S

  Exports ==> with

    cycleElt: ST -> Union(ST,"failed")
      ++ cycleElt(s) returns a pointer to a node in the cycle if the stream s is
      ++ cyclic and returns "failed" if s is not cyclic
    computeCycleLength: ST -> NonNegativeInteger
      ++ computeCycleLength(s) returns the length of the cycle of a
      ++ cyclic stream t, where s is a pointer to a node in the
      ++ cyclic part of t.
    computeCycleEntry: (ST,ST) -> ST
      ++ computeCycleEntry(x,cycElt), where cycElt is a pointer to a
      ++ node in the cyclic part of the cyclic stream x, returns a
      ++ pointer to the first node in the cycle

  Implementation ==> add

    cycleElt x ==
      y := x
      for i in 0.. repeat
        (explicitlyEmpty? y) or (lazy? y) => return "failed"
        y := rst y
        if odd? i then x := rst x
        eq?(x,y) => return y

    computeCycleLength cycElt ==
      y := cycElt
      for i in 1.. repeat
        y := rst y
        eq?(y,cycElt) => return i

    computeCycleEntry(x,cycElt) ==
      y := rest(x, computeCycleLength cycElt)
      repeat
        eq?(x,y) => return x
        x := rst x ; y := rst y

@
\section{domain STREAM Stream}
<<domain STREAM Stream>>=
import Void
import Boolean
import Integer
import NonNegativeInteger
import UniversalSegment
import List
import OutputForm
)abbrev domain STREAM Stream
++ Implementation of streams via lazy evaluation
++ Authors: Burge, Watt; updated by Clifton J. Williamson
++ Date Created: July 1986
++ Date Last Updated: 30 March 1990
++ Keywords: stream, infinite list, infinite sequence
++ Examples:
++ References:
++ Description:
++ A stream is an implementation of an infinite sequence using
++ a list of terms that have been computed and a function closure
++ to compute additional terms when needed.

Stream(S): Exports == Implementation where
--  problems:
--  1) dealing with functions which basically want a finite structure
--  2) 'map' doesn't deal with cycles very well

  S : Type
  B   ==> Boolean
  OUT ==> OutputForm
  I   ==> Integer
  L   ==> List
  NNI ==> NonNegativeInteger
  U   ==> UniversalSegment I

  Exports == Join(LazyStreamAggregate(S),CoercibleFrom L S,ShallowlyMutableAggregate S) with
    repeating: L S -> %
      ++ repeating(l) is a repeating stream whose period is the list l.
    if S has SetCategory then
      repeating?: (L S,%) -> B
        ++ repeating?(l,s) returns true if a stream s is periodic
        ++ with period l, and false otherwise.
    findCycle: (NNI,%) -> Record(cycle?: B, prefix: NNI, period: NNI)
      ++ findCycle(n,st) determines if st is periodic within n.
    delay: (() -> %) -> %
      ++ delay(f) creates a stream with a lazy evaluation defined by function f.
      ++ Caution: This function can only be called in compiled code.
    cons: (S,%) -> %
      ++ cons(a,s) returns a stream whose \spad{first} is \spad{a}
      ++ and whose \spad{rest} is s.
      ++ Note: \spad{cons(a,s) = concat(a,s)}.
    if S has SetCategory then
      output: (I, %) -> Void
        ++ output(n,st) computes and displays the first n entries
        ++ of st.
      showAllElements: % -> OUT
        ++ showAllElements(s) creates an output form which displays all
        ++ computed elements.
      showAll?: () -> B
        ++ showAll?() returns true if all computed entries of streams
        ++ will be displayed.
        --!! this should be a function of one argument
    setrest!: (%,I,%) -> %
      ++ setrest!(x,n,y) sets rest(x,n) to y. The function will expand
      ++ cycles if necessary.
    generate: (() -> S) -> %
      ++ generate(f) creates an infinite stream all of whose elements are
      ++ equal to \spad{f()}.
      ++ Note: \spad{generate(f) = [f(),f(),f(),...]}.
    generate: (S -> S,S) -> %
      ++ generate(f,x) creates an infinite stream whose first element is
      ++ x and whose nth element (\spad{n > 1}) is f applied to the previous
      ++ element. Note: \spad{generate(f,x) = [x,f(x),f(f(x)),...]}.
    filterWhile: (S -> Boolean,%) -> %
      ++ filterWhile(p,s) returns \spad{[x0,x1,...,x(n-1)]} where
      ++ \spad{s = [x0,x1,x2,..]} and
      ++ n is the smallest index such that \spad{p(xn) = false}.
    filterUntil: (S -> Boolean,%) -> %
      ++ filterUntil(p,s) returns \spad{[x0,x1,...,x(n)]} where
      ++ \spad{s = [x0,x1,x2,..]} and
      ++ n is the smallest index such that \spad{p(xn) = true}.
--    if S has SetCategory then
--      map: ((S,S) -> S,%,%,S) -> %
--       ++ map(f,x,y,a) is equivalent to map(f,x,y)
--       ++ If z = map(f,x,y,a), then z = map(f,x,y) except if
--       ++ x.n = a and rest(rest(x,n)) = rest(x,n) in which case
--       ++ rest(z,n) = rest(y,n) or if y.m = a and rest(rest(y,m)) =
--       ++ rest(y,m) in which case rest(z,n) = rest(x,n).
--       ++ Think of the case where f(xi,yi) = xi + yi and a = 0.

  Implementation ==> add
    MIN ==> 1  -- minimal stream index; see also the defaults in LZSTAGG
    x:%

    import CyclicStreamTools(S,%)

--% representation

    -- The Rep is a pair of one of three kinds:
    --    [value: S,              rest: %]
    --    [%nullStream: Magic,    %nil    ]
    --    [%nonNullStream: Magic, fun: () -> %]
    -- Could use a record of unions if we could guarantee no tags.

    import %nil: %          from Foreign Builtin  -- to indicate nil stream
    import %nullStream: S   from Foreign Builtin  -- end-of-stream token
    import %nonNullStream: S from Foreign Builtin -- plentyfull stream token

    import %head: % -> S     from Foreign Builtin
    import %tail: % -> %     from Foreign Builtin
    import %pair: (S,%) -> % from Foreign Builtin

    explicitlyEmpty? x == %peq(frst x,%nullStream)$Foreign(Builtin)
    lazy? x            == %peq(frst x,%nonNullStream)$Foreign(Builtin)

--% signatures of local functions

    expand!      : (%,I) -> %

--% functions to access or change record fields without lazy evaluation

    frst x == %head x
    rst  x == %tail x

    setfrst!(x: %,s: S): S ==
      %store(%head x,s)$Foreign(Builtin)
      %head x

    setrst!(x:%,y: %): % ==
      %store(%tail x,y)$Foreign(Builtin)
      %tail x

    -- destructively changes x to a null stream
    setToNil!(x: %): % ==
      setfrst!(x,%nullStream)
      setrst!(x,%nil)
      x

--% SETCAT functions

    if S has SetCategory then

      getm              : (%,L OUT,I) -> L OUT
      streamCountCoerce : % -> OUT
      listm             : (%,L OUT,I) -> L OUT

      getm(x,le,n) ==
        explicitlyEmpty? x => le
        lazy? x =>
          positive? n =>
            empty? x => le
            getm(rst x,concat(frst(x) :: OUT,le),n - 1)
          concat(message("..."),le)
        eq?(x,rst x) => concat(overbar(frst(x) :: OUT),le)
        positive? n => getm(rst x,concat(frst(x) :: OUT,le),n - 1)
        concat(message("..."),le)

      streamCountCoerce x ==
      -- this will not necessarily display all stream elements
      -- which have been computed
        count := _$streamCount$Lisp
        -- compute count elements
        y := x
        for i in 1..count while not empty? y repeat y := rst y
        fc := findCycle(count,x)
        not fc.cycle? => bracket reverse! getm(x,empty(),count)
        le : L OUT := empty()
        for i in 1..fc.prefix repeat
          le := concat(first(x) :: OUT,le)
          x := rest x
        pp : OUT :=
          fc.period = 1 => overbar(frst(x) :: OUT)
          pl : L OUT := empty()
          for i in 1..fc.period repeat
            pl := concat(frst(x) :: OUT,pl)
            x  := rest x
          overbar commaSeparate reverse! pl
        bracket reverse! concat(pp,le)

      listm(x,le,n) ==
        explicitlyEmpty? x => le
        lazy? x =>
          positive? n =>
            empty? x => le
            listm(rst x, concat(frst(x) :: OUT,le),n-1)
          concat(message("..."),le)
        listm(rst x,concat(frst(x) :: OUT,le),n-1)

      showAllElements x ==
      -- this will display all stream elements which have been computed
      -- and will display at least n elements with n = streamCount$Lisp
        extend(x,_$streamCount$Lisp)
        cycElt := cycleElt x
        cycElt case "failed" =>
          le := listm(x,empty(),_$streamCount$Lisp)
          bracket reverse! le
        cycEnt := computeCycleEntry(x,cycElt :: %)
        le : L OUT := empty()
        while not eq?(x,cycEnt) repeat
          le := concat(frst(x) :: OUT,le)
          x := rst x
        len := computeCycleLength(cycElt :: %)
        pp : OUT :=
          len = 1 => overbar(frst(x) :: OUT)
          pl : L OUT := []
          for i in 1..len repeat
            pl := concat(frst(x) :: OUT,pl)
            x := rst x
          overbar commaSeparate reverse! pl
        bracket reverse! concat(pp,le)

      showAll?() ==
        NULL(_$streamsShowAll$Lisp)$Lisp => false
        true

      coerce(x):OUT ==
        showAll?() => showAllElements x
        streamCountCoerce x

--% AGG functions

    lazyCopy:% -> %
    lazyCopy x == delay
      empty? x => empty()
      concat(frst x, copy rst x)

    copy x ==
      cycElt := cycleElt x
      cycElt case "failed" => lazyCopy x
      ce := cycElt :: %
      len := computeCycleLength(ce)
      e := computeCycleEntry(x,ce)
      d := distance(x,e)
      cycle := complete first(e,len)
      setrst!(tail cycle,cycle)
      d = 0 => cycle
      head := complete first(x,d::NNI)
      setrst!(tail head,cycle)
      head

--% CNAGG functions

    construct l ==
      -- copied from defaults to avoid loading defaults
      empty? l => empty()
      concat(first l, construct rest l)

--% ELTAGG functions

    elt(x:%,n:I) ==
      -- copied from defaults to avoid loading defaults
      n < MIN or empty? x => error "elt: no such element"
      n = MIN => frst x
      elt(rst x,n - 1)

    seteltt:(%,I,S) -> S
    seteltt(x,n,s) ==
      n = MIN => setfrst!(x,s)
      seteltt(rst x,n - 1,s)

    setelt(x,n:I,s:S) ==
      n < MIN or empty? x => error "setelt: no such element"
      x := expand!(x,n - MIN + 1)
      seteltt(x,n,s)

--% IXAGG functions

    removee: ((S -> Boolean),%) -> %
    removee(p,x) == delay
      empty? x => empty()
      p(frst x) => remove(p,rst x)
      concat(frst x,remove(p,rst x))

    remove(p: S -> Boolean,x:%) ==
      explicitlyEmpty? x => empty()
      eq?(x,rst x) =>
        p(frst x) => empty()
        x
      removee(p,x)

    selectt: ((S -> Boolean),%) -> %
    selectt(p,x) == delay
      empty? x => empty()
      not p(frst x) => select(p, rst x)
      concat(frst x,select(p,rst x))

    select(p,x) ==
      explicitlyEmpty? x => empty()
      eq?(x,rst x) =>
        p(frst x) => x
        empty()
      selectt(p,x)

    map(f,x) ==
      map(f,x pretend Stream(S))$StreamFunctions2(S,S) pretend %

    map(g,x,y) ==
      xs := x pretend Stream(S); ys := y pretend Stream(S)
      map(g,xs,ys)$StreamFunctions3(S,S,S) pretend %

    fill!(x,s) ==
      setfrst!(x,s)
      setrst!(x,x)

    map!(f,x) ==
    -- too many problems with map! on a lazy stream, so
    -- in this case, an error message is returned
      cyclic? x =>
        tail := cycleTail x ; y := x
        until y = tail repeat
          setfrst!(y,f frst y)
          y := rst y
        x
      explicitlyFinite? x =>
        y := x
        while not empty? y repeat
          setfrst!(y,f frst y)
          y := rst y
        x
      error "map!: stream with lazy evaluation"

    swap!(x,m,n) ==
      (not index?(m,x)) or (not index?(n,x)) =>
        error "swap!: no such elements"
      x := expand!(x,max(m,n) - MIN + 1)
      xm := elt(x,m); xn := elt(x,n)
      setelt(x,m,xn); setelt(x,n,xm)
      x

--% LNAGG functions

    concat(x:%,s:S) == delay
      empty? x => concat(s,empty())
      concat(frst x,concat(rst x,s))

    concat(x:%,y:%) == delay
      empty? x => y
      concat(frst x,concat(rst x, y))

    concat l == delay
      empty? l => empty()
      empty?(x := first l) => concat rest l
      concat(frst x,concat(rst x,concat rest l))

    setelt(x,seg:U,s:S) ==
      low := lo seg
      hasHi seg =>
        high := hi seg
        high < low => s
        (not index?(low,x)) or (not index?(high,x)) =>
          error "setelt: index out of range"
        x := expand!(x,high - MIN + 1)
        y := rest(x,(low - MIN) :: NNI)
        for i in 0..(high-low) repeat
          setfrst!(y,s)
          y := rst y
        s
      not index?(low,x) => error "setelt: index out of range"
      x := rest(x,(low - MIN) :: NNI)
      setrst!(x,x)
      setfrst!(x,s)

--% RCAGG functions

    empty() ==
      %pair(%nullStream,%nil)

    lazyEval(x: %): % ==
      (rst(x):(()-> %)) ()

    lazyEvaluate x ==
      st := lazyEval x
      setfrst!(x, frst st)
      setrst!(x,if %peq(rst st,st)$Foreign(Builtin) then x else rst st)
      x

    -- empty? is the only function that explicitly causes evaluation
    -- of a stream element
    empty? x ==
      while lazy? x repeat
        st := lazyEval x
        setfrst!(x, frst st)
        setrst!(x,if %peq(rst st,st)$Foreign(Builtin) then x else rst st)
      explicitlyEmpty? x

    --setvalue(x,s) == setfirst!(x,s)

    --setchildren(x,l) ==
      --empty? l => error "setchildren: empty list of children"
      --not(empty? rest l) => error "setchildren: wrong number of children"
      --setrest!(x,first l)

--% URAGG functions

    first(x,n) == delay
    -- former name: take
      n = 0 or empty? x => empty()
      (concat(frst x, first(rst x,(n-1) :: NNI)))

    concat(s:S,x:%) ==
      %pair(s,x)

    cons(s,x) == concat(s,x)

    cycleSplit! x ==
      cycElt := cycleElt x
      cycElt case "failed" =>
        error "cycleSplit!: non-cyclic stream"
      y := computeCycleEntry(x,cycElt :: %)
      eq?(x,y) => (setToNil! x; return y)
      z := rst x
      repeat
        eq?(y,z) => (setrest!(x,empty()); return y)
        x := z ; z := rst z

    expand!(x,n) ==
    -- expands cycles (if necessary) so that the first n
    -- elements of x will not be part of a cycle
      n < 1 => x
      y := x
      for i in 1..n while not empty? y repeat y := rst y
      cycElt := cycleElt x
      cycElt case "failed" => x
      e := computeCycleEntry(x,cycElt :: %)
      d : I := distance(x,e)
      d >= n => x
      if d = 0 then
        -- roll the cycle 1 entry
        d := 1
        t := cycleTail e
        if eq?(t,e) then
          t := concat(frst t,empty())
          e := setrst!(t,t)
          setrst!(x,e)
        else
          setrst!(t,concat(frst e,rst e))
          e := rst e
      nLessD := (n-d) :: NNI
      y := complete first(e,nLessD)
      e := rest(e,nLessD)
      setrst!(tail y,e)
      setrst!(rest(x,(d-1) :: NNI),y)
      x

    first x ==
      empty? x => error "Can't take the first of an empty stream."
      frst x

    concat!(x:%,y:%) ==
      empty? x => y
      setrst!(tail x,y)

    concat!(x:%,s:S) ==
      concat!(x,concat(s,empty()))

    setfirst!(x,s) == setelt(x,0,s)
    setelt(x,"first",s) == setfirst!(x,s)
    setrest!(x,y) ==
      empty? x => error "setrest!: empty stream"
      setrst!(x,y)
    setelt(x,"rest",y) == setrest!(x,y)

    setlast!(x,s) ==
      empty? x => error "setlast!: empty stream"
      setfrst!(tail x, s)
    setelt(x,"last",s) == setlast!(x,s)

    split!(x,n) ==
      n < MIN => error "split!: index out of range"
      n = MIN =>
        y : % := empty()
        setfrst!(y,frst x)
        setrst!(y,rst x)
        setToNil! x
        y
      x := expand!(x,n - MIN)
      x := rest(x,(n - MIN - 1) :: NNI)
      y := rest x
      setrst!(x,empty())
      y

--% STREAM functions

    coerce(l: L S) == construct l

    repeating l ==
      empty? l =>
        error "Need a non-null list to make a repeating stream."
      x0 : % := x := construct l
      while not empty? rst x repeat x := rst x
      setrst!(x,x0)

    if S has SetCategory then

      repeating?(l, x) ==
        empty? l =>
          error "Need a non-empty? list to make a repeating stream."
        empty? rest l =>
          not empty? x and frst x = first l and x = rst x
        x0 := x
        for s in l repeat
          empty? x or s ~= frst x => return false
          x := rst x
        eq?(x,x0)

    findCycle(n, x) ==
      hd := x
      -- Determine whether periodic within n.
      tl := rest(x, n)
      explicitlyEmpty? tl => [false, 0, 0]
      i := 0; while not eq?(x,tl) repeat (x := rst x; i := i + 1)
      i = n => [false, 0, 0]
      -- Find period. Now x=tl, so step over and find it again.
      x := rst x; periode := 1
      while not eq?(x,tl) repeat (x := rst x; periode := periode + 1)
      -- Find non-periodic part.
      x := hd; xp := rest(hd, periode); npp := 0
      while not eq?(x,xp) repeat (x := rst x; xp := rst xp; npp := npp+1)
      [true, npp, periode]

    delay(fs:()->%) ==
      %pair(%nonNullStream,fs : %)

    explicitEntries? x ==
      not explicitlyEmpty? x and not lazy? x

    numberOfComputedEntries x ==
      explicitEntries? x => numberOfComputedEntries(rst x) + 1
      0

    if S has SetCategory then

      output(n,x) ==
        (not(positive? n)) or empty? x => void()
        mathPrint(frst(x)::OUT)$Lisp
        output(n-1, rst x)

    setrestt!(x: %,n: I,y: %): % ==
      n = 0 => setrst!(x,y)
      setrestt!(rst x,n-1,y)

    setrest!(x,n,y) ==
      negative? n or empty? x => error "setrest!: no such rest"
      x := expand!(x,n+1)
      setrestt!(x,n,y)

    generate f    == delay concat(f(), generate f)
    gen:(S -> S,S) -> %
    gen(f,s) == delay(ss:=f s; concat(ss, gen(f,ss)))
    generate(f,s)==concat(s,gen(f,s))

    swhilee:(S -> Boolean,%) -> %
    swhilee(p,x) == delay
      empty? x      => empty()
      not p(frst x) => empty()
      concat(frst x,filterWhile(p,rst x))
    filterWhile(p,x)==
      explicitlyEmpty? x => empty()
      eq?(x,rst x) =>
        p(frst x) => x
        empty()
      swhilee(p,x)

    suntill: (S -> Boolean,%) -> %
    suntill(p,x) == delay
      empty? x  => empty()
      p(frst x) => concat(frst x,empty())
      concat(frst x, filterUntil(p, rst x))

    filterUntil(p,x)==
      explicitlyEmpty? x => empty()
      eq?(x,rst x) =>
        p(frst x) => concat(frst x,empty())
        x
      suntill(p,x)

--  if S has SetCategory then
--    mapp: ((S,S) -> S,%,%,S) -> %
--    mapp(f,x,y,a) == delay
--      empty? x or empty? y => empty()
--      concat(f(frst x,frst y), map(f,rst x,rst y,a))
--      map(f,x,y,a) ==
--      explicitlyEmpty? x => empty()
--      eq?(x,rst x) =>
--        frst x=a => y
--        map(f(frst x,#1),y)
--      explicitlyEmpty? y => empty()
--      eq?(y,rst y) =>
--        frst y=a => x
--        p(f(#1,frst y),x)
--      mapp(f,x,y,a)

@

\section{package STREAM1 StreamFunctions1}

<<package STREAM1 StreamFunctions1>>=
import Type
import Stream
)abbrev package STREAM1 StreamFunctions1
++ Authors: Burge, Watt; updated by Clifton J. Williamson
++ Date Created: July 1986
++ Date Last Updated: 29 January 1990
++ Keywords: stream, infinite list, infinite sequence
StreamFunctions1(S:Type): Exports == Implementation where
  ++ Functions defined on streams with entries in one set.
  ST  ==> Stream

  Exports ==> with
    concat: ST ST S -> ST S
      ++ concat(u) returns the left-to-right concatentation of the streams in u.
      ++ Note: \spad{concat(u) = reduce(concat,u)}.

  Implementation ==> add

    concat z == delay
      empty? z => empty()
      empty?(x := frst z) => concat rst z
      concat(frst x,concat(rst x,concat rst z))

@

\section{package STREAM2 StreamFunctions2}

<<package STREAM2 StreamFunctions2>>=
import Type
import Stream
)abbrev package STREAM2 StreamFunctions2
++ Authors: Burge, Watt; updated by Clifton J. Williamson
++ Date Created: July 1986
++ Date Last Updated: 29 January 1990
++ Keywords: stream, infinite list, infinite sequence
StreamFunctions2(A:Type,B:Type): Exports == Implementation where
  ++ Functions defined on streams with entries in two sets.
  ST   ==> Stream

  Exports ==> with
    map: ((A -> B),ST A) -> ST B
      ++ map(f,s) returns a stream whose elements are the function f applied
      ++ to the corresponding elements of s.
      ++ Note: \spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}.
    scan: (B,((A,B) -> B),ST A) -> ST B
      ++ scan(b,h,[x0,x1,x2,...]) returns \spad{[y0,y1,y2,...]}, where
      ++ \spad{y0 = h(x0,b)},
      ++ \spad{y1 = h(x1,y0)},\spad{...}
      ++ \spad{yn = h(xn,y(n-1))}.
    reduce:  (B,(A,B) -> B,ST A) -> B
      ++ reduce(b,f,u), where u is a finite stream \spad{[x0,x1,...,xn]},
      ++ returns the value \spad{r(n)} computed as follows:
      ++ \spad{r0 = f(x0,b),
      ++ r1 = f(x1,r0),...,
      ++ r(n) = f(xn,r(n-1))}.
--  rreduce: (B,(A,B) -> B,ST A) -> B
--    ++ reduce(b,h,[x0,x1,..,xn]) = h(x1,h(x2(..,h(x(n-1),h(xn,b))..)
--  reshape: (ST B,ST A) -> ST B
--    ++ reshape(y,x) = y

  Implementation ==> add

    mapp: (A -> B,ST A) -> ST B
    mapp(f,x)== delay
      empty? x => empty()
      concat(f frst x, map(f,rst x))

    map(f,x) ==
      explicitlyEmpty? x => empty()
      eq?(x,rst x) => repeating([f frst x])
      mapp(f, x)

--  reshape(y,x) == y

    scan(b,h,x) == delay
      empty? x => empty()
      c := h(frst x,b)
      concat(c,scan(c,h,rst x))

    reduce(b,h,x) ==
      empty? x => b
      reduce(h(frst x,b),h,rst x)
--  rreduce(b,h,x) ==
--    empty? x => b
--    h(frst x,rreduce(b,h,rst x))

@

\section{package STREAM3 StreamFunctions3}

<<package STREAM3 StreamFunctions3>>=
import Type
import Stream
)abbrev package STREAM3 StreamFunctions3
++ Authors: Burge, Watt; updated by Clifton J. Williamson
++ Date Created: July 1986
++ Date Last Updated: 29 January 1990
++ Keywords: stream, infinite list, infinite sequence
StreamFunctions3(A,B,C): Exports == Implementation where
  ++ Functions defined on streams with entries in three sets.
  A  : Type
  B  : Type
  C  : Type
  ST ==> Stream

  Exports ==> with
    map: ((A,B) -> C,ST A,ST B) -> ST C
      ++ map(f,st1,st2) returns the stream whose elements are the
      ++ function f applied to the corresponding elements of st1 and st2.
      ++ Note: \spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}.

  Implementation ==> add

    mapp:((A,B) -> C,ST A,ST B) -> ST C
    mapp(g,x,y) == delay
      empty? x or empty? y => empty()
      concat(g(frst x,frst y), map(g,rst x,rst y))

    map(g,x,y) ==
      explicitlyEmpty? x => empty()
      eq?(x,rst x) => map(g(frst x,#1),y)$StreamFunctions2(B,C)
      explicitlyEmpty? y => empty()
      eq?(y,rst y) => map(g(#1,frst y),x)$StreamFunctions2(A,C)
      mapp(g,x,y)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<category LZSTAGG LazyStreamAggregate>>
<<package CSTTOOLS CyclicStreamTools>>
<<domain STREAM Stream>>
<<package STREAM1 StreamFunctions1>>
<<package STREAM2 StreamFunctions2>>
<<package STREAM3 StreamFunctions3>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}