1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra solvelin.spad}
\author{Patrizia Gianni, Stephen M. Watt, Robert Sutor}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package LSMP LinearSystemMatrixPackage}
<<package LSMP LinearSystemMatrixPackage>>=
)abbrev package LSMP LinearSystemMatrixPackage
++ Author: P.Gianni, S.Watt
++ Date Created: Summer 1985
++ Date Last Updated:Summer 1990
++ Basic Functions: solve, particularSolution, hasSolution?, rank
++ Related Constructors: LinearSystemMatrixPackage1
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package solves linear system in the matrix form \spad{AX = B}.
LinearSystemMatrixPackage(F, Row, Col, M): Cat == Capsule where
F: Field
Row: FiniteLinearAggregate F with shallowlyMutable
Col: FiniteLinearAggregate F with shallowlyMutable
M : MatrixCategory(F, Row, Col)
N ==> NonNegativeInteger
PartialV ==> Union(Col, "failed")
Both ==> Record(particular: PartialV, basis: List Col)
Cat ==> with
solve : (M, Col) -> Both
++ solve(A,B) finds a particular solution of the system \spad{AX = B}
++ and a basis of the associated homogeneous system \spad{AX = 0}.
solve : (M, List Col) -> List Both
++ solve(A,LB) finds a particular soln of the systems \spad{AX = B}
++ and a basis of the associated homogeneous systems \spad{AX = 0}
++ where B varies in the list of column vectors LB.
particularSolution: (M, Col) -> PartialV
++ particularSolution(A,B) finds a particular solution of the linear
++ system \spad{AX = B}.
hasSolution?: (M, Col) -> Boolean
++ hasSolution?(A,B) tests if the linear system \spad{AX = B}
++ has a solution.
rank : (M, Col) -> N
++ rank(A,B) computes the rank of the complete matrix \spad{(A|B)}
++ of the linear system \spad{AX = B}.
Capsule ==> add
systemMatrix : (M, Col) -> M
aSolution : M -> PartialV
-- rank theorem
hasSolution?(A, b) == rank A = rank systemMatrix(A, b)
systemMatrix(m, v) == horizConcat(m, -(v::M))
rank(A, b) == rank systemMatrix(A, b)
particularSolution(A, b) == aSolution rowEchelon systemMatrix(A,b)
-- m should be in row-echelon form.
-- last column of m is -(right-hand-side of system)
aSolution m ==
nvar := (ncols m - 1)::N
rk := maxRowIndex m
while (rk >= minRowIndex m) and every?(zero?, row(m, rk))
repeat rk := dec rk
rk < minRowIndex m => new(nvar, 0)
ck := minColIndex m
while (ck < maxColIndex m) and zero? qelt(m, rk, ck) repeat
ck := inc ck
ck = maxColIndex m => "failed"
sol := new(nvar, 0)$Col
-- find leading elements of diagonal
v := new(nvar, minRowIndex m - 1)$PrimitiveArray(Integer)
for i in minRowIndex m .. rk repeat
j : Integer
for j in 0.. while zero? qelt(m, i, j+minColIndex m) repeat 0
v.j := i
for j in 0..nvar-1 repeat
if v.j >= minRowIndex m then
qsetelt_!(sol, j+minIndex sol, - qelt(m, v.j, maxColIndex m))
sol
solve(A:M, b:Col) ==
-- Special case for homogeneous systems.
every?(zero?, b) => [new(ncols A, 0), nullSpace A]
-- General case.
m := rowEchelon systemMatrix(A, b)
[aSolution m,
nullSpace subMatrix(m, minRowIndex m, maxRowIndex m,
minColIndex m, maxColIndex m - 1)]
solve(A:M, l:List Col) ==
null l => [[new(ncols A, 0), nullSpace A]]
nl := (sol0 := solve(A, first l)).basis
cons(sol0,
[[aSolution rowEchelon systemMatrix(A, b), nl]
for b in rest l])
@
\section{package LSMP1 LinearSystemMatrixPackage1}
<<package LSMP1 LinearSystemMatrixPackage1>>=
)abbrev package LSMP1 LinearSystemMatrixPackage1
++ Author: R. Sutor
++ Date Created: June, 1994
++ Date Last Updated:
++ Basic Functions: solve, particularSolution, hasSolution?, rank
++ Related Constructors: LinearSystemMatrixPackage
++ Also See:
++ AMS Classifications:
++ Keywords: solve
++ References:
++ Description:
++ This package solves linear system in the matrix form \spad{AX = B}.
++ It is essentially a particular instantiation of the package
++ \spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This
++ package's existence makes it easier to use \spadfun{solve} in the
++ AXIOM interpreter.
LinearSystemMatrixPackage1(F): Cat == Capsule where
F: Field
Row ==> Vector F
Col ==> Vector F
M ==> Matrix(F)
LL ==> List List F
N ==> NonNegativeInteger
PartialV ==> Union(Col, "failed")
Both ==> Record(particular: PartialV, basis: List Col)
LSMP ==> LinearSystemMatrixPackage(F, Row, Col, M)
Cat ==> with
solve : (M, Col) -> Both
++ solve(A,B) finds a particular solution of the system \spad{AX = B}
++ and a basis of the associated homogeneous system \spad{AX = 0}.
solve : (LL, Col) -> Both
++ solve(A,B) finds a particular solution of the system \spad{AX = B}
++ and a basis of the associated homogeneous system \spad{AX = 0}.
solve : (M, List Col) -> List Both
++ solve(A,LB) finds a particular soln of the systems \spad{AX = B}
++ and a basis of the associated homogeneous systems \spad{AX = 0}
++ where B varies in the list of column vectors LB.
solve : (LL, List Col) -> List Both
++ solve(A,LB) finds a particular soln of the systems \spad{AX = B}
++ and a basis of the associated homogeneous systems \spad{AX = 0}
++ where B varies in the list of column vectors LB.
particularSolution: (M, Col) -> PartialV
++ particularSolution(A,B) finds a particular solution of the linear
++ system \spad{AX = B}.
hasSolution?: (M, Col) -> Boolean
++ hasSolution?(A,B) tests if the linear system \spad{AX = B}
++ has a solution.
rank : (M, Col) -> N
++ rank(A,B) computes the rank of the complete matrix \spad{(A|B)}
++ of the linear system \spad{AX = B}.
Capsule ==> add
solve(m : M, c: Col): Both == solve(m,c)$LSMP
solve(ll : LL, c: Col): Both == solve(matrix(ll)$M,c)$LSMP
solve(m : M, l : List Col): List Both == solve(m, l)$LSMP
solve(ll : LL, l : List Col): List Both == solve(matrix(ll)$M, l)$LSMP
particularSolution (m : M, c : Col): PartialV == particularSolution(m, c)$LSMP
hasSolution?(m :M, c : Col): Boolean == hasSolution?(m, c)$LSMP
rank(m : M, c : Col): N == rank(m, c)$LSMP
@
\section{package LSPP LinearSystemPolynomialPackage}
<<package LSPP LinearSystemPolynomialPackage>>=
)abbrev package LSPP LinearSystemPolynomialPackage
++ Author: P.Gianni
++ Date Created: Summer 1985
++ Date Last Updated: Summer 1993
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References: SystemSolvePackage
++ Description:
++ this package finds the solutions of linear systems presented as a
++ list of polynomials.
LinearSystemPolynomialPackage(R, E, OV, P): Cat == Capsule where
R : IntegralDomain
OV : OrderedSet
E : OrderedAbelianMonoidSup
P : PolynomialCategory(R,E,OV)
F ==> Fraction P
NNI ==> NonNegativeInteger
V ==> Vector
M ==> Matrix
Soln ==> Record(particular: Union(V F, "failed"), basis: List V F)
Cat == with
linSolve: (List P, List OV) -> Soln
++ linSolve(lp,lvar) finds the solutions of the linear system
++ of polynomials lp = 0 with respect to the list of symbols lvar.
Capsule == add
---- Local Functions ----
poly2vect: (P, List OV) -> Record(coefvec: V F, reductum: F)
intoMatrix: (List P, List OV) -> Record(mat: M F, vec: V F)
poly2vect(p : P, vs : List OV) : Record(coefvec: V F, reductum: F) ==
coefs := new(#vs, 0)$(V F)
for v in vs for i in 1.. while p ~= 0 repeat
u := univariate(p, v)
degree u = 0 => "next v"
coefs.i := (c := leadingCoefficient u)::F
p := p - monomial(c,v, 1)
[coefs, p :: F]
intoMatrix(ps : List P, vs : List OV ) : Record(mat: M F, vec: V F) ==
m := zero(#ps, #vs)$M(F)
v := new(#ps, 0)$V(F)
for p in ps for i in 1.. repeat
totalDegree(p,vs) > 1 => error "The system is not linear"
r := poly2vect(p,vs)
m:=setRow_!(m,i,r.coefvec)
v.i := - r.reductum
[m, v]
linSolve(ps, vs) ==
r := intoMatrix(ps, vs)
solve(r.mat, r.vec)$LinearSystemMatrixPackage(F,V F,V F,M F)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package LSMP LinearSystemMatrixPackage>>
<<package LSMP1 LinearSystemMatrixPackage1>>
<<package LSPP LinearSystemPolynomialPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|