1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra riccati.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package ODEPRRIC PrimitiveRatRicDE}
<<package ODEPRRIC PrimitiveRatRicDE>>=
)abbrev package ODEPRRIC PrimitiveRatRicDE
++ Author: Manuel Bronstein
++ Date Created: 22 October 1991
++ Date Last Updated: 2 February 1993
++ Description: In-field solution of Riccati equations, primitive case.
PrimitiveRatRicDE(F, UP, L, LQ): Exports == Implementation where
F : Join(Field, CharacteristicZero, RetractableTo Fraction Integer)
UP : UnivariatePolynomialCategory F
L : LinearOrdinaryDifferentialOperatorCategory UP
LQ : LinearOrdinaryDifferentialOperatorCategory Fraction UP
N ==> NonNegativeInteger
Z ==> Integer
RF ==> Fraction UP
UP2 ==> SparseUnivariatePolynomial UP
REC ==> Record(deg:N, eq:UP)
REC2 ==> Record(deg:N, eq:UP2)
POL ==> Record(poly:UP, eq:L)
FRC ==> Record(frac:RF, eq:L)
CNT ==> Record(constant:F, eq:L)
IJ ==> Record(ij: List Z, deg:N)
Exports ==> with
denomRicDE: L -> UP
++ denomRicDE(op) returns a polynomial \spad{d} such that any rational
++ solution of the associated Riccati equation of \spad{op y = 0} is
++ of the form \spad{p/d + q'/q + r} for some polynomials p and q
++ and a reduced r. Also, \spad{deg(p) < deg(d)} and {gcd(d,q) = 1}.
leadingCoefficientRicDE: L -> List REC
++ leadingCoefficientRicDE(op) returns
++ \spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial
++ part of any rational solution of the associated Riccati equation of
++ \spad{op y = 0} must have degree mj for some j, and its leading
++ coefficient is then a zero of pj. In addition,\spad{m1>m2> ... >mk}.
constantCoefficientRicDE: (L, UP -> List F) -> List CNT
++ constantCoefficientRicDE(op, ric) returns
++ \spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational
++ solution with no polynomial part of the associated Riccati equation of
++ \spad{op y = 0} must be one of the ai's in which case the equation for
++ \spad{z = y e^{-int ai}} is \spad{Li z = 0}.
++ \spad{ric} is a Riccati equation solver over \spad{F}, whose input
++ is the associated linear equation.
polyRicDE: (L, UP -> List F) -> List POL
++ polyRicDE(op, zeros) returns
++ \spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial
++ part of any rational solution of the associated Riccati equation of
++ \spad{op y=0} must be one of the pi's (up to the constant coefficient),
++ in which case the equation for \spad{z=y e^{-int p}} is \spad{Li z =0}.
++ \spad{zeros} is a zero finder in \spad{UP}.
singRicDE: (L, (UP, UP2) -> List UP, UP -> Factored UP) -> List FRC
++ singRicDE(op, zeros, ezfactor) returns
++ \spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular
++ part of any rational solution of the associated Riccati equation of
++ \spad{op y=0} must be one of the fi's (up to the constant coefficient),
++ in which case the equation for \spad{z=y e^{-int p}} is \spad{Li z=0}.
++ \spad{zeros(C(x),H(x,y))} returns all the \spad{P_i(x)}'s such that
++ \spad{H(x,P_i(x)) = 0 modulo C(x)}.
++ Argument \spad{ezfactor} is a factorisation in \spad{UP},
++ not necessarily into irreducibles.
changeVar: (L, UP) -> L
++ changeVar(+/[ai D^i], a) returns the operator \spad{+/[ai (D+a)^i]}.
changeVar: (L, RF) -> L
++ changeVar(+/[ai D^i], a) returns the operator \spad{+/[ai (D+a)^i]}.
Implementation ==> add
import PrimitiveRatDE(F, UP, L, LQ)
import BalancedFactorisation(F, UP)
bound : (UP, L) -> N
lambda : (UP, L) -> List IJ
infmax : (IJ, L) -> List Z
dmax : (IJ, UP, L) -> List Z
getPoly : (IJ, L, List Z) -> UP
getPol : (IJ, UP, L, List Z) -> UP2
innerlb : (L, UP -> Z) -> List IJ
innermax : (IJ, L, UP -> Z) -> List Z
tau0 : (UP, UP) -> UP
poly1 : (UP, UP, Z) -> UP2
getPol1 : (List Z, UP, L) -> UP2
getIndices : (N, List IJ) -> List Z
refine : (List UP, UP -> Factored UP) -> List UP
polysol : (L, N, Boolean, UP -> List F) -> List POL
fracsol : (L, (UP, UP2) -> List UP, List UP) -> List FRC
padicsol : (UP, L, N, Boolean, (UP, UP2) -> List UP) -> List FRC
leadingDenomRicDE : (UP, L) -> List REC2
factoredDenomRicDE: L -> List UP
constantCoefficientOperator: (L, N) -> UP
infLambda: L -> List IJ
-- infLambda(op) returns
-- \spad{[[[i,j], (\deg(a_i)-\deg(a_j))/(i-j) ]]} for all the pairs
-- of indices \spad{i,j} such that \spad{(\deg(a_i)-\deg(a_j))/(i-j)} is
-- an integer.
diff := D()$L
diffq := D()$LQ
lambda(c, l) == innerlb(l, order(#1, c)::Z)
infLambda l == innerlb(l, -(degree(#1)::Z))
infmax(rec, l) == innermax(rec, l, degree(#1)::Z)
dmax(rec, c, l) == innermax(rec, l, - order(#1, c)::Z)
tau0(p, q) == ((q exquo (p ** order(q, p)))::UP) rem p
poly1(c, cp, i) == */[monomial(1,1)$UP2 - (j * cp)::UP2 for j in 0..i-1]
getIndices(n, l) == removeDuplicates_! concat [r.ij for r in l | r.deg=n]
denomRicDE l == */[c ** bound(c, l) for c in factoredDenomRicDE l]
polyRicDE(l, zeros) == concat([0, l], polysol(l, 0, false, zeros))
-- refine([p1,...,pn], foo) refines the list of factors using foo
refine(l, ezfactor) ==
concat [[r.factor for r in factors ezfactor p] for p in l]
-- returns [] if the solutions of l have no p-adic component at c
padicsol(c, op, b, finite?, zeros) ==
ans:List(FRC) := empty()
finite? and zero? b => ans
lc := leadingDenomRicDE(c, op)
if finite? then lc := select_!(#1.deg <= b, lc)
for rec in lc repeat
for r in zeros(c, rec.eq) | r ~= 0 repeat
rcn := r /$RF (c ** rec.deg)
neweq := changeVar(op, rcn)
sols := padicsol(c, neweq, (rec.deg-1)::N, true, zeros)
ans :=
empty? sols => concat([rcn, neweq], ans)
concat_!([[rcn + sol.frac, sol.eq] for sol in sols], ans)
ans
leadingDenomRicDE(c, l) ==
ind:List(Z) -- to cure the compiler... (won't compile without)
lb := lambda(c, l)
done:List(N) := empty()
ans:List(REC2) := empty()
for rec in lb | (not member?(rec.deg, done)) and
not(empty?(ind := dmax(rec, c, l))) repeat
ans := concat([rec.deg, getPol(rec, c, l, ind)], ans)
done := concat(rec.deg, done)
sort_!(#1.deg > #2.deg, ans)
getPol(rec, c, l, ind) ==
-- one?(rec.deg) => getPol1(ind, c, l)
(rec.deg = 1) => getPol1(ind, c, l)
+/[monomial(tau0(c, coefficient(l, i::N)), i::N)$UP2 for i in ind]
getPol1(ind, c, l) ==
cp := diff c
+/[tau0(c, coefficient(l, i::N)) * poly1(c, cp, i) for i in ind]
constantCoefficientRicDE(op, ric) ==
m := "max"/[degree p for p in coefficients op]
[[a, changeVar(op,a::UP)] for a in ric constantCoefficientOperator(op,m)]
constantCoefficientOperator(op, m) ==
ans:UP := 0
while op ~= 0 repeat
if degree(p := leadingCoefficient op) = m then
ans := ans + monomial(leadingCoefficient p, degree op)
op := reductum op
ans
getPoly(rec, l, ind) ==
+/[monomial(leadingCoefficient coefficient(l,i::N),i::N)$UP for i in ind]
-- returns empty() if rec is does not reach the max,
-- the list of indices (including rec) that reach the max otherwise
innermax(rec, l, nu) ==
n := degree l
i := first(rec.ij)
m := i * (d := rec.deg) + nu coefficient(l, i::N)
ans:List(Z) := empty()
for j in 0..n | (f := coefficient(l, j)) ~= 0 repeat
if ((k := (j * d + nu f)) > m) then return empty()
else if (k = m) then ans := concat(j, ans)
ans
leadingCoefficientRicDE l ==
ind:List(Z) -- to cure the compiler... (won't compile without)
lb := infLambda l
done:List(N) := empty()
ans:List(REC) := empty()
for rec in lb | (not member?(rec.deg, done)) and
not(empty?(ind := infmax(rec, l))) repeat
ans := concat([rec.deg, getPoly(rec, l, ind)], ans)
done := concat(rec.deg, done)
sort_!(#1.deg > #2.deg, ans)
factoredDenomRicDE l ==
bd := factors balancedFactorisation(leadingCoefficient l, coefficients l)
[dd.factor for dd in bd]
changeVar(l:L, a:UP) ==
dpa := diff + a::L -- the operator (D + a)
dpan:L := 1 -- will accumulate the powers of (D + a)
op:L := 0
for i in 0..degree l repeat
op := op + coefficient(l, i) * dpan
dpan := dpa * dpan
primitivePart op
changeVar(l:L, a:RF) ==
dpa := diffq + a::LQ -- the operator (D + a)
dpan:LQ := 1 -- will accumulate the powers of (D + a)
op:LQ := 0
for i in 0..degree l repeat
op := op + coefficient(l, i)::RF * dpan
dpan := dpa * dpan
splitDenominator(op, empty()).eq
bound(c, l) ==
empty?(lb := lambda(c, l)) => 1
"max"/[rec.deg for rec in lb]
-- returns all the pairs [[i, j], n] such that
-- n = (nu(i) - nu(j)) / (i - j) is an integer
innerlb(l, nu) ==
lb:List(IJ) := empty()
n := degree l
for i in 0..n | (li := coefficient(l, i)) ~= 0 repeat
for j in i+1..n | (lj := coefficient(l, j)) ~= 0 repeat
u := (nu li - nu lj) exquo (i-j)
if (u case Z) and ((b := u::Z) > 0) then
lb := concat([[i, j], b::N], lb)
lb
singRicDE(l, zeros, ezfactor) ==
concat([0, l], fracsol(l, zeros, refine(factoredDenomRicDE l, ezfactor)))
-- returns [] if the solutions of l have no singular component
fracsol(l, zeros, lc) ==
ans:List(FRC) := empty()
empty? lc => ans
empty?(sols := padicsol(first lc, l, 0, false, zeros)) =>
fracsol(l, zeros, rest lc)
for rec in sols repeat
neweq := changeVar(l, rec.frac)
sols := fracsol(neweq, zeros, rest lc)
ans :=
empty? sols => concat(rec, ans)
concat_!([[rec.frac + sol.frac, sol.eq] for sol in sols], ans)
ans
-- returns [] if the solutions of l have no polynomial component
polysol(l, b, finite?, zeros) ==
ans:List(POL) := empty()
finite? and zero? b => ans
lc := leadingCoefficientRicDE l
if finite? then lc := select_!(#1.deg <= b, lc)
for rec in lc repeat
for a in zeros(rec.eq) | a ~= 0 repeat
atn:UP := monomial(a, rec.deg)
neweq := changeVar(l, atn)
sols := polysol(neweq, (rec.deg - 1)::N, true, zeros)
ans :=
empty? sols => concat([atn, neweq], ans)
concat_!([[atn + sol.poly, sol.eq] for sol in sols], ans)
ans
@
\section{package ODERTRIC RationalRicDE}
<<package ODERTRIC RationalRicDE>>=
)abbrev package ODERTRIC RationalRicDE
++ Author: Manuel Bronstein
++ Date Created: 22 October 1991
++ Date Last Updated: 11 April 1994
++ Description: In-field solution of Riccati equations, rational case.
RationalRicDE(F, UP): Exports == Implementation where
F : Join(Field, CharacteristicZero, RetractableTo Integer,
RetractableTo Fraction Integer)
UP : UnivariatePolynomialCategory F
N ==> NonNegativeInteger
Z ==> Integer
SY ==> Symbol
P ==> Polynomial F
RF ==> Fraction P
EQ ==> Equation RF
QF ==> Fraction UP
UP2 ==> SparseUnivariatePolynomial UP
SUP ==> SparseUnivariatePolynomial P
REC ==> Record(poly:SUP, vars:List SY)
SOL ==> Record(var:List SY, val:List F)
POL ==> Record(poly:UP, eq:L)
FRC ==> Record(frac:QF, eq:L)
CNT ==> Record(constant:F, eq:L)
UTS ==> UnivariateTaylorSeries(F, dummy, 0)
UPS ==> SparseUnivariatePolynomial UTS
L ==> LinearOrdinaryDifferentialOperator2(UP, QF)
LQ ==> LinearOrdinaryDifferentialOperator1 QF
Exports ==> with
ricDsolve: (LQ, UP -> List F) -> List QF
++ ricDsolve(op, zeros) returns the rational solutions of the associated
++ Riccati equation of \spad{op y = 0}.
++ \spad{zeros} is a zero finder in \spad{UP}.
ricDsolve: (LQ, UP -> List F, UP -> Factored UP) -> List QF
++ ricDsolve(op, zeros, ezfactor) returns the rational
++ solutions of the associated Riccati equation of \spad{op y = 0}.
++ \spad{zeros} is a zero finder in \spad{UP}.
++ Argument \spad{ezfactor} is a factorisation in \spad{UP},
++ not necessarily into irreducibles.
ricDsolve: (L, UP -> List F) -> List QF
++ ricDsolve(op, zeros) returns the rational solutions of the associated
++ Riccati equation of \spad{op y = 0}.
++ \spad{zeros} is a zero finder in \spad{UP}.
ricDsolve: (L, UP -> List F, UP -> Factored UP) -> List QF
++ ricDsolve(op, zeros, ezfactor) returns the rational
++ solutions of the associated Riccati equation of \spad{op y = 0}.
++ \spad{zeros} is a zero finder in \spad{UP}.
++ Argument \spad{ezfactor} is a factorisation in \spad{UP},
++ not necessarily into irreducibles.
singRicDE: (L, UP -> Factored UP) -> List FRC
++ singRicDE(op, ezfactor) returns \spad{[[f1,L1], [f2,L2],..., [fk,Lk]]}
++ such that the singular ++ part of any rational solution of the
++ associated Riccati equation of \spad{op y = 0} must be one of the fi's
++ (up to the constant coefficient), in which case the equation for
++ \spad{z = y e^{-int ai}} is \spad{Li z = 0}.
++ Argument \spad{ezfactor} is a factorisation in \spad{UP},
++ not necessarily into irreducibles.
polyRicDE: (L, UP -> List F) -> List POL
++ polyRicDE(op, zeros) returns \spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]}
++ such that the polynomial part of any rational solution of the
++ associated Riccati equation of \spad{op y = 0} must be one of the pi's
++ (up to the constant coefficient), in which case the equation for
++ \spad{z = y e^{-int p}} is \spad{Li z = 0}.
++ \spad{zeros} is a zero finder in \spad{UP}.
if F has AlgebraicallyClosedField then
ricDsolve: LQ -> List QF
++ ricDsolve(op) returns the rational solutions of the associated
++ Riccati equation of \spad{op y = 0}.
ricDsolve: (LQ, UP -> Factored UP) -> List QF
++ ricDsolve(op, ezfactor) returns the rational solutions of the
++ associated Riccati equation of \spad{op y = 0}.
++ Argument \spad{ezfactor} is a factorisation in \spad{UP},
++ not necessarily into irreducibles.
ricDsolve: L -> List QF
++ ricDsolve(op) returns the rational solutions of the associated
++ Riccati equation of \spad{op y = 0}.
ricDsolve: (L, UP -> Factored UP) -> List QF
++ ricDsolve(op, ezfactor) returns the rational solutions of the
++ associated Riccati equation of \spad{op y = 0}.
++ Argument \spad{ezfactor} is a factorisation in \spad{UP},
++ not necessarily into irreducibles.
Implementation ==> add
import RationalLODE(F, UP)
import NonLinearSolvePackage F
import PrimitiveRatDE(F, UP, L, LQ)
import PrimitiveRatRicDE(F, UP, L, LQ)
FifCan : RF -> Union(F, "failed")
UP2SUP : UP -> SUP
innersol : (List UP, Boolean) -> List QF
mapeval : (SUP, List SY, List F) -> UP
ratsol : List List EQ -> List SOL
ratsln : List EQ -> Union(SOL, "failed")
solveModulo : (UP, UP2) -> List UP
logDerOnly : L -> List QF
nonSingSolve : (N, L, UP -> List F) -> List QF
constantRic : (UP, UP -> List F) -> List F
nopoly : (N, UP, L, UP -> List F) -> List QF
reverseUP : UP -> UTS
reverseUTS : (UTS, N) -> UP
newtonSolution : (L, F, N, UP -> List F) -> UP
newtonSolve : (UPS, F, N) -> Union(UTS, "failed")
genericPolynomial: (SY, Z) -> Record(poly:SUP, vars:List SY)
-- genericPolynomial(s, n) returns
-- \spad{[[s0 + s1 X +...+ sn X^n],[s0,...,sn]]}.
dummy := new()$SY
UP2SUP p == map(#1::P,p)$UnivariatePolynomialCategoryFunctions2(F,UP,P,SUP)
logDerOnly l == [differentiate(s) / s for s in ratDsolve(l, 0).basis]
ricDsolve(l:LQ, zeros:UP -> List F) == ricDsolve(l, zeros, squareFree)
ricDsolve(l:L, zeros:UP -> List F) == ricDsolve(l, zeros, squareFree)
singRicDE(l, ezfactor) == singRicDE(l, solveModulo, ezfactor)
ricDsolve(l:LQ, zeros:UP -> List F, ezfactor:UP -> Factored UP) ==
ricDsolve(splitDenominator(l, empty()).eq, zeros, ezfactor)
mapeval(p, ls, lv) ==
map(ground eval(#1, ls, lv),
p)$UnivariatePolynomialCategoryFunctions2(P, SUP, F, UP)
FifCan f ==
((n := retractIfCan(numer f))@Union(F, "failed") case F) and
((d := retractIfCan(denom f))@Union(F, "failed") case F) =>
(n::F) / (d::F)
"failed"
-- returns [0, []] if n < 0
genericPolynomial(s, n) ==
ans:SUP := 0
l:List(SY) := empty()
for i in 0..n repeat
ans := ans + monomial((sy := new s)::P, i::N)
l := concat(sy, l)
[ans, reverse_! l]
ratsln l ==
ls:List(SY) := empty()
lv:List(F) := empty()
for eq in l repeat
((u := FifCan rhs eq) case "failed") or
((v := retractIfCan(lhs eq)@Union(SY, "failed")) case "failed")
=> return "failed"
lv := concat(u::F, lv)
ls := concat(v::SY, ls)
[ls, lv]
ratsol l ==
ans:List(SOL) := empty()
for sol in l repeat
if ((u := ratsln sol) case SOL) then ans := concat(u::SOL, ans)
ans
-- returns [] if the solutions of l have no polynomial component
polyRicDE(l, zeros) ==
ans:List(POL) := [[0, l]]
empty?(lc := leadingCoefficientRicDE l) => ans
rec := first lc -- one with highest degree
for a in zeros(rec.eq) | a ~= 0 repeat
if (p := newtonSolution(l, a, rec.deg, zeros)) ~= 0 then
ans := concat([p, changeVar(l, p)], ans)
ans
-- reverseUP(a_0 + a_1 x + ... + an x^n) = a_n + ... + a_0 x^n
reverseUP p ==
ans:UTS := 0
n := degree(p)::Z
while p ~= 0 repeat
ans := ans + monomial(leadingCoefficient p, (n - degree p)::N)
p := reductum p
ans
-- reverseUTS(a_0 + a_1 x + ..., n) = a_n + ... + a_0 x^n
reverseUTS(s, n) ==
+/[monomial(coefficient(s, i), (n - i)::N)$UP for i in 0..n]
-- returns a potential polynomial solution p with leading coefficient a*?**n
newtonSolution(l, a, n, zeros) ==
i:N
m:Z := 0
aeq:UPS := 0
op := l
while op ~= 0 repeat
mu := degree(op) * n + degree leadingCoefficient op
op := reductum op
if mu > m then m := mu
while l ~= 0 repeat
c := leadingCoefficient l
d := degree l
s:UTS := monomial(1, (m - d * n - degree c)::N)$UTS * reverseUP c
aeq := aeq + monomial(s, d)
l := reductum l
(u := newtonSolve(aeq, a, n)) case UTS => reverseUTS(u::UTS, n)
-- newton lifting failed, so revert to traditional method
atn := monomial(a, n)$UP
neq := changeVar(l, atn)
sols := [sol.poly for sol in polyRicDE(neq, zeros) | degree(sol.poly) < n]
empty? sols => atn
atn + first sols
-- solves the algebraic equation eq for y, returns a solution of degree n with
-- initial term a
-- uses naive newton approximation for now
-- an example where this fails is y^2 + 2 x y + 1 + x^2 = 0
-- which arises from the differential operator D^2 + 2 x D + 1 + x^2
newtonSolve(eq, a, n) ==
deq := differentiate eq
sol := a::UTS
for i in 1..n repeat
(xquo := eq(sol) exquo deq(sol)) case "failed" => return "failed"
sol := truncate(sol - xquo::UTS, i)
sol
-- there could be the same solutions coming in different ways, so we
-- stop when the number of solutions reaches the order of the equation
ricDsolve(l:L, zeros:UP -> List F, ezfactor:UP -> Factored UP) ==
n := degree l
ans:List(QF) := empty()
for rec in singRicDE(l, ezfactor) repeat
ans := removeDuplicates_! concat_!(ans,
[rec.frac + f for f in nonSingSolve(n, rec.eq, zeros)])
#ans = n => return ans
ans
-- there could be the same solutions coming in different ways, so we
-- stop when the number of solutions reaches the order of the equation
nonSingSolve(n, l, zeros) ==
ans:List(QF) := empty()
for rec in polyRicDE(l, zeros) repeat
ans := removeDuplicates_! concat_!(ans, nopoly(n,rec.poly,rec.eq,zeros))
#ans = n => return ans
ans
constantRic(p, zeros) ==
zero? degree p => empty()
zeros squareFreePart p
-- there could be the same solutions coming in different ways, so we
-- stop when the number of solutions reaches the order of the equation
nopoly(n, p, l, zeros) ==
ans:List(QF) := empty()
for rec in constantCoefficientRicDE(l, constantRic(#1, zeros)) repeat
ans := removeDuplicates_! concat_!(ans,
[(rec.constant::UP + p)::QF + f for f in logDerOnly(rec.eq)])
#ans = n => return ans
ans
-- returns [p1,...,pn] s.t. h(x,pi(x)) = 0 mod c(x)
solveModulo(c, h) ==
rec := genericPolynomial(dummy, degree(c)::Z - 1)
unk:SUP := 0
while not zero? h repeat
unk := unk + UP2SUP(leadingCoefficient h) * (rec.poly ** degree h)
h := reductum h
sol := ratsol solve(coefficients(monicDivide(unk,UP2SUP c).remainder),
rec.vars)
[mapeval(rec.poly, s.var, s.val) for s in sol]
if F has AlgebraicallyClosedField then
zro1: UP -> List F
zro : (UP, UP -> Factored UP) -> List F
ricDsolve(l:L) == ricDsolve(l, squareFree)
ricDsolve(l:LQ) == ricDsolve(l, squareFree)
ricDsolve(l:L, ezfactor:UP -> Factored UP) ==
ricDsolve(l, zro(#1, ezfactor), ezfactor)
ricDsolve(l:LQ, ezfactor:UP -> Factored UP) ==
ricDsolve(l, zro(#1, ezfactor), ezfactor)
zro(p, ezfactor) ==
concat [zro1(r.factor) for r in factors ezfactor p]
zro1 p ==
[zeroOf(map(#1, p)$UnivariatePolynomialCategoryFunctions2(F, UP,
F, SparseUnivariatePolynomial F))]
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
-- Copyright (C) 2007-2009, Gabriel Dos Reis.
-- All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
-- Compile order for the differential equation solver:
-- oderf.spad odealg.spad nlode.spad nlinsol.spad riccati.spad odeef.spad
<<package ODEPRRIC PrimitiveRatRicDE>>
<<package ODERTRIC RationalRicDE>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|