aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/rderf.spad.pamphlet
blob: 29d55915f316e25b7b2f77b8627ed9d0301f8681 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra rderf.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package RDETR TranscendentalRischDE}
<<package RDETR TranscendentalRischDE>>=
)abbrev package RDETR TranscendentalRischDE
++ Risch differential equation, transcendental case.
++ Author: Manuel Bronstein
++ Date Created: Jan 1988
++ Date Last Updated: 2 November 1995
TranscendentalRischDE(F, UP): Exports == Implementation where
  F  : Join(Field, CharacteristicZero, RetractableTo Integer)
  UP : UnivariatePolynomialCategory F

  N   ==> NonNegativeInteger
  Z   ==> Integer
  RF  ==> Fraction UP
  REC ==> Record(a:UP, b:UP, c:UP, t:UP)
  SPE ==> Record(b:UP, c:UP, m:Z, alpha:UP, beta:UP)
  PSOL==> Record(ans:UP, nosol:Boolean)
  ANS ==> Union(ans:PSOL, eq:SPE)
  PSQ ==> Record(ans:RF, nosol:Boolean)

  Exports ==> with
    monomRDE: (RF,RF,UP->UP) -> Union(Record(a:UP,b:RF,c:RF,t:UP), "failed")
      ++ monomRDE(f,g,D) returns \spad{[A, B, C, T]} such that
      ++ \spad{y' + f y = g} has a solution if and only if \spad{y = Q / T},
      ++ where Q satisfies \spad{A Q' + B Q = C} and has no normal pole.
      ++ A and T are polynomials and B and C have no normal poles.
      ++ D is the derivation to use.
    baseRDE : (RF, RF) -> PSQ
      ++ baseRDE(f, g) returns a \spad{[y, b]} such that \spad{y' + fy = g}
      ++ if \spad{b = true}, y is a partial solution otherwise (no solution
      ++ in that case).
      ++ D is the derivation to use.
    polyRDE : (UP, UP, UP, Z, UP -> UP) -> ANS
      ++ polyRDE(a, B, C, n, D) returns either:
      ++ 1. \spad{[Q, b]} such that \spad{degree(Q) <= n} and
      ++    \spad{a Q'+ B Q = C} if \spad{b = true}, Q is a partial solution
      ++    otherwise.
      ++ 2. \spad{[B1, C1, m, \alpha, \beta]} such that any polynomial solution
      ++    of degree at most n of \spad{A Q' + BQ = C} must be of the form
      ++    \spad{Q = \alpha H + \beta} where \spad{degree(H) <= m} and
      ++    H satisfies \spad{H' + B1 H = C1}.
      ++ D is the derivation to use.

  Implementation ==> add
    import MonomialExtensionTools(F, UP)

    getBound     : (UP, UP, Z) -> Z
    SPDEnocancel1: (UP, UP, Z, UP -> UP) -> PSOL
    SPDEnocancel2: (UP, UP, Z, Z, F, UP -> UP) -> ANS
    SPDE         : (UP, UP, UP, Z, UP -> UP) -> Union(SPE, "failed")

-- cancellation at infinity is possible, A is assumed nonzero
-- needs tagged union because of branch choice problem
-- always returns a PSOL in the base case (never a SPE)
    polyRDE(aa, bb, cc, d, derivation) ==
      n:Z
      (u := SPDE(aa, bb, cc, d, derivation)) case "failed" => [[0, true]]
      zero?(u.c) => [[u.beta, false]]
      baseCase? := one?(dt := derivation monomial(1, 1))
      n := degree(dt)::Z - 1
      b0? := zero?(u.b)
      (~b0?) and (baseCase? or degree(u.b) > max(0, n)) =>
          answ := SPDEnocancel1(u.b, u.c, u.m, derivation)
          [[u.alpha * answ.ans + u.beta, answ.nosol]]
      (n > 0) and (b0? or degree(u.b) < n) =>
          uansw := SPDEnocancel2(u.b,u.c,u.m,n,leadingCoefficient dt,derivation)
          uansw case ans=> [[u.alpha * uansw.ans.ans + u.beta, uansw.ans.nosol]]
          [[uansw.eq.b, uansw.eq.c, uansw.eq.m,
            u.alpha * uansw.eq.alpha, u.alpha * uansw.eq.beta + u.beta]]
      b0? and baseCase? =>
          degree(u.c) >= u.m => [[0, true]]
          [[u.alpha * integrate(u.c) + u.beta, false]]
      [u::SPE]

-- cancellation at infinity is possible, A is assumed nonzero
-- if u.b = 0 then u.a = 1 already, but no degree check is done
-- returns "failed" if a p' + b p = c has no soln of degree at most d,
-- otherwise [B, C, m, \alpha, \beta] such that any soln p of degree at
-- most d of  a p' + b p = c  must be of the form p = \alpha h + \beta,
-- where h' + B h = C and h has degree at most m
    SPDE(aa, bb, cc, d, derivation) ==
      zero? cc => [0, 0, 0, 0, 0]
      d < 0 => "failed"
      (u := cc exquo (g := gcd(aa, bb))) case "failed" => "failed"
      aa := (aa exquo g)::UP
      bb := (bb exquo g)::UP
      cc := u::UP
      (ra := retractIfCan(aa)@Union(F, "failed")) case F =>
        a1 := inv(ra::F)
        [a1 * bb, a1 * cc, d, 1, 0]
      bc := extendedEuclidean(bb, aa, cc)::Record(coef1:UP, coef2:UP)
      qr := divide(bc.coef1, aa)
      r  := qr.remainder         -- z = bc.coef2 + b * qr.quotient
      (v  := SPDE(aa, bb + derivation aa,
                  bc.coef2 + bb * qr.quotient - derivation r,
                   d - degree(aa)::Z, derivation)) case "failed" => "failed"
      [v.b, v.c, v.m, aa * v.alpha, aa * v.beta + r]

-- solves q' + b q = c  with deg(q) <= d
-- case (B <> 0) and (D = d/dt or degree(B) > max(0, degree(Dt) - 1))
-- this implies no cancellation at infinity, BQ term dominates
-- returns [Q, flag] such that Q is a solution if flag is false,
-- a partial solution otherwise.
    SPDEnocancel1(bb, cc, d, derivation) ==
      q:UP := 0
      db := (degree bb)::Z
      lb := leadingCoefficient bb
      while cc ~= 0 repeat
        d < 0 or (n := (degree cc)::Z - db) < 0 or n > d => return [q, true]
        r := monomial((leadingCoefficient cc) / lb, n::N)
        cc := cc - bb * r - derivation r
        d := n - 1
        q := q + r
      [q, false]

-- case (t is a nonlinear monomial) and (B = 0 or degree(B) < degree(Dt) - 1)
-- this implies no cancellation at infinity, DQ term dominates or degree(Q) = 0
-- dtm1 = degree(Dt) - 1
    SPDEnocancel2(bb, cc, d, dtm1, lt, derivation) ==
      q:UP := 0
      while cc ~= 0 repeat
        d < 0 or (n := (degree cc)::Z - dtm1) < 0 or n > d => return [[q, true]]
        if n > 0 then
          r  := monomial((leadingCoefficient cc) / (n * lt), n::N)
          cc := cc - bb * r - derivation r
          d  := n - 1
          q  := q + r
        else        -- n = 0 so solution must have degree 0
          db:N := (zero? bb => 0; degree bb);
          db ~= degree(cc) => return [[q, true]]
          zero? db => return [[bb, cc, 0, 1, q]]
          r  := leadingCoefficient(cc) / leadingCoefficient(bb)
          cc := cc - r * bb - derivation(r::UP)
          d  := - 1
          q := q + r::UP
      [[q, false]]

    monomRDE(f, g, derivation) ==
      gg := gcd(d := normalDenom(f,derivation), e := normalDenom(g,derivation))
      tt := (gcd(e, differentiate e) exquo gcd(gg,differentiate gg))::UP
      (u := ((tt * (aa := d * tt)) exquo e)) case "failed" => "failed"
      [aa, aa * f - (d * derivation tt)::RF, u::UP * e * g, tt]

-- solve y' + f y = g for y in RF
-- assumes that f is weakly normalized (no finite cancellation)
-- base case: F' = 0
    baseRDE(f, g) ==
      (u := monomRDE(f, g, differentiate)) case "failed" => [0, true]
      n := getBound(u.a,bb := retract(u.b)@UP,degree(cc := retract(u.c)@UP)::Z)
      v := polyRDE(u.a, bb, cc, n, differentiate).ans
      [v.ans / u.t, v.nosol]

-- return an a bound on the degree of a solution of A P'+ B P = C,A ~= 0
-- cancellation at infinity is possible
-- base case: F' = 0
    getBound(a, b, dc) ==
      da := (degree a)::Z
      zero? b => max(0, dc - da + 1)
      db := (degree b)::Z
      da > (db + 1) => max(0, dc - da + 1)
      da < (db + 1) => dc - db
      (n := retractIfCan(- leadingCoefficient(b) / leadingCoefficient(a)
                      )@Union(Z, "failed")) case Z => max(n::Z, dc - db)
      dc - db

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

-- SPAD files for the integration world should be compiled in the
-- following order:
--
--   intaux  RDERF  intrf  rdeef  intef  irexpand  integrat

<<package RDETR TranscendentalRischDE>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}