aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/radix.spad.pamphlet
blob: f5ed227ef27671097ab119cce890d3ac8f8d0e25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra radix.spad}
\author{Stephen M. Watt, Clifton J. Williamson}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject

\section{domain RADIX RadixExpansion}

<<domain RADIX RadixExpansion>>=
import Integer
import Fraction
import List
import Stream
)abbrev domain RADIX RadixExpansion
++ Author: Stephen M. Watt
++ Date Created: October 1986
++ Date Last Updated: May 15, 1991
++ Basic Operations: wholeRadix, fractRadix, wholeRagits, fractRagits
++ Related Domains: BinaryExpansion, DecimalExpansion, HexadecimalExpansion,
++    RadixUtilities
++ Also See:
++ AMS Classifications:
++ Keywords: radix, base, repeating decimal
++ Examples:
++ References:
++ Description:
++   This domain allows rational numbers to be presented as repeating
++   decimal expansions or more generally as repeating expansions in any base.

RadixExpansion(bb): Exports == Implementation where
  bb   :  Integer
  I   ==> Integer
  NNI ==> NonNegativeInteger
  OUT ==> OutputForm
  RN  ==> Fraction Integer
  ST  ==> Stream Integer
  QuoRem ==> Record(quotient: Integer, remainder: Integer)

  Exports == Join(QuotientFieldCategory(Integer),_
                    CoercibleTo Fraction Integer) with
    fractionPart: % -> Fraction Integer
      ++ fractionPart(rx) returns the fractional part of a radix expansion.
    wholeRagits: % -> List Integer
      ++ wholeRagits(rx) returns the ragits of the integer part
      ++ of a radix expansion.
    fractRagits: % -> Stream Integer
      ++ fractRagits(rx) returns the ragits of the fractional part
      ++ of a radix expansion.
    prefixRagits: % -> List Integer
      ++ prefixRagits(rx) returns the non-cyclic part of the ragits
      ++ of the fractional part of a radix expansion.
      ++ For example, if \spad{x = 3/28 = 0.10 714285 714285 ...},
      ++ then \spad{prefixRagits(x)=[1,0]}.
    cycleRagits: % -> List Integer
      ++ cycleRagits(rx) returns the cyclic part of the ragits of the
      ++ fractional part of a radix expansion.
      ++ For example, if \spad{x = 3/28 = 0.10 714285 714285 ...},
      ++ then \spad{cycleRagits(x) = [7,1,4,2,8,5]}.
    wholeRadix: List Integer -> %
      ++ wholeRadix(l) creates an integral radix expansion from a list
      ++ of ragits.
      ++ For example, \spad{wholeRadix([1,3,4])} will return \spad{134}.
    fractRadix: (List Integer, List Integer) -> %
      ++ fractRadix(pre,cyc) creates a fractional radix expansion
      ++ from a list of prefix ragits and a list of cyclic ragits.
      ++ For example, \spad{fractRadix([1],[6])} will return \spad{0.16666666...}.

  Implementation ==> add
    -- The efficiency of arithmetic operations is poor.
    -- Could use a lazy eval where either rational rep
    -- or list of ragit rep (the current) or both are kept
    -- as demanded.

    bb < 2 => error "Radix base must be at least 2"
    Rep := Record(sgn: Integer,      int: List Integer,
                  pfx: List Integer, cyc: List Integer)

    q:     RN
    qr:    QuoRem
    a,b:   %
    n:     I

    radixInt:    (I, I)    -> List I
    radixFrac:   (I, I, I) -> Record(pfx: List I, cyc: List I)
    checkRagits: List I    -> Boolean

    -- Arithmetic operations
    characteristic() == 0
    differentiate a == 0

    0     == [1, nil(),  nil(), nil()]
    1     == [1, [1], nil(), nil()]
    - a   == (a = 0 => 0; [-a.sgn, a.int, a.pfx, a.cyc])
    a + b == (a::RN + b::RN)::%
    a - b == (a::RN - b::RN)@RN::%
    n * a == (n     * a::RN)::%
    a * b == (a::RN * b::RN)::%
    a / b == (a::RN / b::RN)::%
    (i:I) / (j:I) == (i/j)@RN :: %
    a < b == a::RN < b::RN
    a = b == a.sgn = b.sgn and a.int = b.int and
             a.pfx = b.pfx and a.cyc = b.cyc
    numer a == numer(a::RN)
    denom a == denom(a::RN)

    -- Algebraic coercions
    coerce(a):RN == (wholePart a) :: RN + fractionPart a
    coerce(n):%  == n :: RN :: %
    coerce(q):%  ==
      s := 1; if q < 0 then (s := -1; q := -q)
      qr      := divide(numer q,denom q)
      whole   := radixInt (qr.quotient,bb)
      fractn  := radixFrac(qr.remainder,denom q,bb)
      cycle   := (fractn.cyc = [0] => nil(); fractn.cyc)
      [s,whole,fractn.pfx,cycle]

    retractIfCan(a):Union(RN,"failed") == a::RN
    retractIfCan(a):Union(I,"failed") ==
      empty?(a.pfx) and empty?(a.cyc) => wholePart a
      "failed"

    -- Exported constructor/destructors
    ceiling a == ceiling(a::RN)
    floor a == floor(a::RN)

    wholePart a ==
      n0 := 0
      for r in a.int repeat n0 := bb*n0 + r
      a.sgn*n0
    fractionPart(a: %): Fraction Integer ==
      n0 := 0
      for r in a.pfx repeat n0 := bb*n0 + r
      null a.cyc =>
          a.sgn*n0/bb**((#a.pfx)::NNI)
      n1 := n0
      for r in a.cyc repeat n1 := bb*n1 + r
      n := n1 - n0
      d := (bb**((#a.cyc)::NNI) - 1) * bb**((#a.pfx)::NNI)
      a.sgn*n/d

    wholeRagits  a == a.int
    fractRagits  a == concat(construct(a.pfx)@ST,repeating a.cyc)
    prefixRagits a == a.pfx
    cycleRagits  a == a.cyc

    wholeRadix li ==
      checkRagits li
      [1, li, nil(), nil()]
    fractRadix(lpfx, lcyc) ==
      checkRagits lpfx; checkRagits lcyc
      [1, nil(), lpfx, lcyc]

    -- Output

    ALPHAS : String := "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

    intToExpr(i:I): OUT ==
      -- computes a digit for bases between 11 and 36
      i < 10 => i :: OUT
      elt(ALPHAS,(i-10) + minIndex(ALPHAS)) :: OUT

    exprgroup(le: List OUT): OUT ==
      empty? le      => error "exprgroup needs non-null list"
      empty? rest le => first le
      abs bb <= 36 => hconcat le
      blankSeparate le

    intgroup(li: List I): OUT ==
      empty? li      => error "intgroup needs non-null list"
      empty? rest li => 
        abs bb <= 36 => intToExpr first(li)
        first(li)::OUT
      abs bb <= 10 => hconcat [i :: OUT for i in li]
      abs bb <= 36 => hconcat [intToExpr(i) for i in li]
      blankSeparate [i :: OUT for i in li]

    overBar(li: List I): OUT == overbar intgroup li

    coerce(a): OUT ==
      le : List OUT := nil()
      if not null a.cyc then le := concat(overBar  a.cyc,le)
      if not null a.pfx then le := concat(intgroup a.pfx,le)
      if not null le    then le := concat("." :: OUT,le)
      if not null a.int then le := concat(intgroup a.int,le)
      else le := concat(0 :: OUT,le)
      rex := exprgroup le
      if a.sgn < 0 then -rex else rex

    -- Construction utilities
    checkRagits li ==
      for i in li repeat if i < 0 or i >= bb then
        error "Each ragit (digit) must be between 0 and base-1"
      true

    radixInt(n,bas) ==
      rits: List I := nil()
      while abs n ~= 0 repeat
        qr   := divide(n,bas)
        n    := qr.quotient
        rits := concat(qr.remainder,rits)
      rits

    radixFrac(num,den,bas) ==
      -- Rits is the sequence of quotient/remainder pairs
      -- in calculating the radix expansion of the rational number.
      -- We wish to find p and c such that
      --    rits.i are distinct    for 0<=i<=p+c-1
      --    rits.i = rits.(i+p)    for i>p
      -- I.e. p is the length of the non-periodic prefix and c is
      -- the length of the cycle.

      -- Compute p and c using Floyd's algorithm.
      -- 1. Find smallest n s.t. rits.n = rits.(2*n)
      qr    := divide(bas * num, den)
      i : I := 0
      qr1i  := qr2i := qr
      rits: List QuoRem := [qr]
      until qr1i = qr2i repeat
        qr1i := divide(bas * qr1i.remainder,den)
        qrt  := divide(bas * qr2i.remainder,den)
        qr2i := divide(bas * qrt.remainder,den)
        rits := concat(qr2i, concat(qrt, rits))
        i    := i + 1
      rits := reverse_! rits
      n    := i
      -- 2. Find p = first i such that rits.i = rits.(i+n)
      ritsi := rits
      ritsn := rits; for i in 1..n repeat ritsn := rest ritsn
      i := 0
      while first(ritsi) ~= first(ritsn) repeat
        ritsi := rest ritsi
        ritsn := rest ritsn
        i     := i + 1
      p := i
      -- 3. Find c = first i such that rits.p = rits.(p+i)
      ritsn := rits; for i in 1..n repeat ritsn := rest ritsn
      rn    := first ritsn
      cfound:= false
      c : I := 0
      for i in 1..p while not cfound repeat
        ritsn := rest ritsn
        if rn = first(ritsn) then
          c := i
          cfound := true
      if not cfound then c := n
      -- 4. Now produce the lists of ragits.
      ritspfx: List I := nil()
      ritscyc: List I := nil()
      for i in 1..p repeat
        ritspfx := concat(first(rits).quotient, ritspfx)
        rits    := rest rits
      for i in 1..c repeat
        ritscyc := concat(first(rits).quotient, ritscyc)
        rits    := rest rits
      [reverse_! ritspfx, reverse_! ritscyc]

@
\section{domain BINARY BinaryExpansion}
<<domain BINARY BinaryExpansion>>=
)abbrev domain BINARY BinaryExpansion
++ Author: Clifton J. Williamson
++ Date Created: April 26, 1990
++ Date Last Updated: May 15, 1991
++ Basic Operations:
++ Related Domains: RadixExpansion
++ Also See:
++ AMS Classifications:
++ Keywords: radix, base, binary
++ Examples:
++ References:
++ Description:
++   This domain allows rational numbers to be presented as repeating
++   binary expansions.

BinaryExpansion(): Exports == Implementation where
  Exports == Join(QuotientFieldCategory(Integer),_
               CoercibleTo Fraction Integer,CoercibleTo RadixExpansion(2)) with
    fractionPart: % -> Fraction Integer
      ++ fractionPart(b) returns the fractional part of a binary expansion.
    binary: Fraction Integer -> %
      ++ binary(r) converts a rational number to a binary expansion.

  Implementation ==> RadixExpansion(2) add
    binary r == r :: %
    coerce(x:%): RadixExpansion(2) == rep x

@
\section{domain DECIMAL DecimalExpansion}
<<domain DECIMAL DecimalExpansion>>=
)abbrev domain DECIMAL DecimalExpansion
++ Author: Stephen M. Watt
++ Date Created: October, 1986
++ Date Last Updated: May 15, 1991
++ Basic Operations:
++ Related Domains: RadixExpansion
++ Also See:
++ AMS Classifications:
++ Keywords: radix, base, repeating decimal
++ Examples:
++ References:
++ Description:
++   This domain allows rational numbers to be presented as repeating
++   decimal expansions.
DecimalExpansion(): Exports == Implementation where
  Exports == Join(QuotientFieldCategory(Integer),_
              CoercibleTo Fraction Integer,CoercibleTo RadixExpansion 10) with
    fractionPart: % -> Fraction Integer
      ++ fractionPart(d) returns the fractional part of a decimal expansion.
    decimal: Fraction Integer -> %
      ++ decimal(r) converts a rational number to a decimal expansion.

  Implementation ==> RadixExpansion(10) add
    decimal r == r :: %
    coerce(x:%): RadixExpansion(10) == rep x

@
\section{domain HEXADEC HexadecimalExpansion}
<<domain HEXADEC HexadecimalExpansion>>=
)abbrev domain HEXADEC HexadecimalExpansion
++ Author: Clifton J. Williamson
++ Date Created: April 26, 1990
++ Date Last Updated: May 15, 1991
++ Basic Operations:
++ Related Domains: RadixExpansion
++ Also See:
++ AMS Classifications:
++ Keywords: radix, base, hexadecimal
++ Examples:
++ References:
++ Description:
++   This domain allows rational numbers to be presented as repeating
++   hexadecimal expansions.

HexadecimalExpansion(): Exports == Implementation where
  Exports == Join(QuotientFieldCategory(Integer),_
               CoercibleTo Fraction Integer,_
               CoercibleTo RadixExpansion 16)  with
    fractionPart: % -> Fraction Integer
      ++ fractionPart(h) returns the fractional part of a hexadecimal expansion.
    hex: Fraction Integer -> %
      ++ hex(r) converts a rational number to a hexadecimal expansion.

  Implementation ==> RadixExpansion(16) add
    hex r == r :: %
    coerce(x:%): RadixExpansion(16) == rep x

@
\section{package RADUTIL RadixUtilities}
<<package RADUTIL RadixUtilities>>=
)abbrev package RADUTIL RadixUtilities
++ Author: Stephen M. Watt
++ Date Created: October 1986
++ Date Last Updated: May 15, 1991
++ Basic Operations:
++ Related Domains: RadixExpansion
++ Also See:
++ AMS Classifications:
++ Keywords: radix, base, repeading decimal
++ Examples:
++ References:
++ Description:
++   This package provides tools for creating radix expansions.
RadixUtilities: Exports == Implementation where
  Exports ==> with
    radix: (Fraction Integer,Integer) -> Any
      ++ radix(x,b) converts x to a radix expansion in base b.
  Implementation ==> add
    radix(q, b) ==
      coerce(q :: RadixExpansion(b))$AnyFunctions1(RadixExpansion b)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain RADIX RadixExpansion>>
<<domain BINARY BinaryExpansion>>
<<domain DECIMAL DecimalExpansion>>
<<domain HEXADEC HexadecimalExpansion>>
<<package RADUTIL RadixUtilities>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}