1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra puiseux.spad}
\author{Clifton J. Williamson, Scott C. Morrison}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{category UPXSCCA UnivariatePuiseuxSeriesConstructorCategory}
<<category UPXSCCA UnivariatePuiseuxSeriesConstructorCategory>>=
)abbrev category UPXSCCA UnivariatePuiseuxSeriesConstructorCategory
++ Author: Clifton J. Williamson
++ Date Created: 6 February 1990
++ Date Last Updated: 22 March 1990
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: series, Puiseux, Laurent
++ Examples:
++ References:
++ Description:
++ This is a category of univariate Puiseux series constructed
++ from univariate Laurent series. A Puiseux series is represented
++ by a pair \spad{[r,f(x)]}, where r is a positive rational number and
++ \spad{f(x)} is a Laurent series. This pair represents the Puiseux
++ series \spad{f(x^r)}.
UnivariatePuiseuxSeriesConstructorCategory(Coef,ULS):_
Category == Definition where
Coef : Ring
ULS : UnivariateLaurentSeriesCategory Coef
I ==> Integer
RN ==> Fraction Integer
Definition ==> Join(UnivariatePuiseuxSeriesCategory(Coef),_
RetractableTo ULS,CoercibleFrom ULS) with
puiseux: (RN,ULS) -> %
++ \spad{puiseux(r,f(x))} returns \spad{f(x^r)}.
rationalPower: % -> RN
++ \spad{rationalPower(f(x))} returns r where the Puiseux series
++ \spad{f(x) = g(x^r)}.
laurentRep : % -> ULS
++ \spad{laurentRep(f(x))} returns \spad{g(x)} where the Puiseux series
++ \spad{f(x) = g(x^r)} is represented by \spad{[r,g(x)]}.
degree: % -> RN
++ \spad{degree(f(x))} returns the degree of the leading term of the
++ Puiseux series \spad{f(x)}, which may have zero as a coefficient.
laurent: % -> ULS
++ \spad{laurent(f(x))} converts the Puiseux series \spad{f(x)} to a
++ Laurent series if possible. Error: if this is not possible.
laurentIfCan: % -> Union(ULS,"failed")
++ \spad{laurentIfCan(f(x))} converts the Puiseux series \spad{f(x)}
++ to a Laurent series if possible.
++ If this is not possible, "failed" is returned.
add
zero? x == zero? laurentRep x
retract(x:%):ULS == laurent x
retractIfCan(x:%):Union(ULS,"failed") == laurentIfCan x
@
\section{domain UPXSCONS UnivariatePuiseuxSeriesConstructor}
<<domain UPXSCONS UnivariatePuiseuxSeriesConstructor>>=
)abbrev domain UPXSCONS UnivariatePuiseuxSeriesConstructor
++ Author: Clifton J. Williamson
++ Date Created: 9 May 1989
++ Date Last Updated: 30 November 1994
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: series, Puiseux, Laurent
++ Examples:
++ References:
++ Description:
++ This package enables one to construct a univariate Puiseux series
++ domain from a univariate Laurent series domain. Univariate
++ Puiseux series are represented by a pair \spad{[r,f(x)]}, where r is
++ a positive rational number and \spad{f(x)} is a Laurent series.
++ This pair represents the Puiseux series \spad{f(x^r)}.
UnivariatePuiseuxSeriesConstructor(Coef,ULS):_
Exports == Implementation where
Coef : Ring
ULS : UnivariateLaurentSeriesCategory Coef
I ==> Integer
L ==> List
NNI ==> NonNegativeInteger
OUT ==> OutputForm
PI ==> PositiveInteger
RN ==> Fraction Integer
ST ==> Stream Coef
LTerm ==> Record(k:I,c:Coef)
PTerm ==> Record(k:RN,c:Coef)
ST2LP ==> StreamFunctions2(LTerm,PTerm)
ST2PL ==> StreamFunctions2(PTerm,LTerm)
Exports ==> UnivariatePuiseuxSeriesConstructorCategory(Coef,ULS)
Implementation ==> add
--% representation
Rep := Record(expon:RN,lSeries:ULS)
getExpon: % -> RN
getULS : % -> ULS
getExpon pxs == pxs.expon
getULS pxs == pxs.lSeries
--% creation and destruction
puiseux(n,ls) == [n,ls]
laurentRep x == getULS x
rationalPower x == getExpon x
degree x == getExpon(x) * degree(getULS(x))
0 == puiseux(1,0)
1 == puiseux(1,1)
monomial(c,k) ==
k = 0 => c :: %
k < 0 => puiseux(-k,monomial(c,-1))
puiseux(k,monomial(c,1))
coerce(ls:ULS) == puiseux(1,ls)
coerce(r:Coef) == r :: ULS :: %
coerce(i:I) == i :: Coef :: %
laurentIfCan upxs ==
r := getExpon upxs
one? denom r =>
multiplyExponents(getULS upxs,numer(r) :: PI)
"failed"
laurent upxs ==
(uls := laurentIfCan upxs) case "failed" =>
error "laurent: Puiseux series has fractional powers"
uls :: ULS
multExp: (RN,LTerm) -> PTerm
multExp(r,lTerm) == [r * lTerm.k,lTerm.c]
terms upxs == map(multExp(getExpon upxs,#1),terms getULS upxs)$ST2LP
clearDen: (I,PTerm) -> LTerm
clearDen(n,lTerm) ==
(int := retractIfCan(n * lTerm.k)@Union(I,"failed")) case "failed" =>
error "series: inappropriate denominator"
[int :: I,lTerm.c]
series(n,stream) ==
str := map(clearDen(n,#1),stream)$ST2PL
puiseux(1/n,series str)
--% normalizations
rewrite:(%,PI) -> %
rewrite(upxs,m) ==
-- rewrites a series in x**r as a series in x**(r/m)
puiseux((getExpon upxs)*(1/m),multiplyExponents(getULS upxs,m))
ratGcd: (RN,RN) -> RN
ratGcd(r1,r2) ==
-- if r1 = prod(p prime,p ** ep(r1)) and
-- if r2 = prod(p prime,p ** ep(r2)), then
-- ratGcd(r1,r2) = prod(p prime,p ** min(ep(r1),ep(r2)))
gcd(numer r1,numer r2) / lcm(denom r1,denom r2)
withNewExpon:(%,RN) -> %
withNewExpon(upxs,r) ==
rewrite(upxs,numer(getExpon(upxs)/r) pretend PI)
--% predicates
upxs1 = upxs2 ==
r1 := getExpon upxs1; r2 := getExpon upxs2
ls1 := getULS upxs1; ls2 := getULS upxs2
(r1 = r2) => (ls1 = ls2)
r := ratGcd(r1,r2)
m1 := numer(getExpon(upxs1)/r) pretend PI
m2 := numer(getExpon(upxs2)/r) pretend PI
multiplyExponents(ls1,m1) = multiplyExponents(ls2,m2)
pole? upxs == pole? getULS upxs
--% arithmetic
applyFcn:((ULS,ULS) -> ULS,%,%) -> %
applyFcn(op,pxs1,pxs2) ==
r1 := getExpon pxs1; r2 := getExpon pxs2
ls1 := getULS pxs1; ls2 := getULS pxs2
(r1 = r2) => puiseux(r1,op(ls1,ls2))
r := ratGcd(r1,r2)
m1 := numer(getExpon(pxs1)/r) pretend PI
m2 := numer(getExpon(pxs2)/r) pretend PI
puiseux(r,op(multiplyExponents(ls1,m1),multiplyExponents(ls2,m2)))
pxs1 + pxs2 == applyFcn(#1 +$ULS #2,pxs1,pxs2)
pxs1 - pxs2 == applyFcn(#1 -$ULS #2,pxs1,pxs2)
pxs1:% * pxs2:% == applyFcn(#1 *$ULS #2,pxs1,pxs2)
pxs:% ** n:NNI == puiseux(getExpon pxs,getULS(pxs)**n)
recip pxs ==
rec := recip getULS pxs
rec case "failed" => "failed"
puiseux(getExpon pxs,rec :: ULS)
RATALG : Boolean := Coef has Algebra(Fraction Integer)
elt(upxs1:%,upxs2:%) ==
uls1 := laurentRep upxs1; uls2 := laurentRep upxs2
r1 := rationalPower upxs1; r2 := rationalPower upxs2
(n := retractIfCan(r1)@Union(Integer,"failed")) case Integer =>
puiseux(r2,uls1(uls2 ** r1))
RATALG =>
if zero? (coef := coefficient(uls2,deg := degree uls2)) then
deg := order(uls2,deg + 1000)
zero? (coef := coefficient(uls2,deg)) =>
error "elt: series with many leading zero coefficients"
-- a fractional power of a Laurent series may not be defined:
-- if f(x) = c * x**n + ..., then f(x) ** (p/q) will be defined
-- only if q divides n
b := lcm(denom r1,deg); c := b quo deg
mon : ULS := monomial(1,c)
uls2 := elt(uls2,mon) ** r1
puiseux(r2*(1/c),elt(uls1,uls2))
error "elt: rational powers not available for this coefficient domain"
if Coef has "**": (Coef,Integer) -> Coef and
Coef has "**": (Coef, RN) -> Coef then
eval(upxs:%,a:Coef) == eval(getULS upxs,a ** getExpon(upxs))
if Coef has Field then
pxs1:% / pxs2:% == applyFcn(#1 /$ULS #2,pxs1,pxs2)
inv upxs ==
(invUpxs := recip upxs) case "failed" =>
error "inv: multiplicative inverse does not exist"
invUpxs :: %
--% values
variable upxs == variable getULS upxs
center upxs == center getULS upxs
coefficient(upxs,rn) ==
one? denom(n := rn / getExpon upxs) =>
coefficient(getULS upxs,numer n)
0
elt(upxs:%,rn:RN) == coefficient(upxs,rn)
--% other functions
roundDown: RN -> I
roundDown rn ==
-- returns the largest integer <= rn
(den := denom rn) = 1 => numer rn
n := (num := numer rn) quo den
positive?(num) => n
n - 1
roundUp: RN -> I
roundUp rn ==
-- returns the smallest integer >= rn
(den := denom rn) = 1 => numer rn
n := (num := numer rn) quo den
positive?(num) => n + 1
n
order upxs == getExpon upxs * order getULS upxs
order(upxs,r) ==
e := getExpon upxs
ord := order(getULS upxs, n := roundDown(r / e))
ord = n => r
ord * e
truncate(upxs,r) ==
e := getExpon upxs
puiseux(e,truncate(getULS upxs,roundDown(r / e)))
truncate(upxs,r1,r2) ==
e := getExpon upxs
puiseux(e,truncate(getULS upxs,roundUp(r1 / e),roundDown(r2 / e)))
complete upxs == puiseux(getExpon upxs,complete getULS upxs)
extend(upxs,r) ==
e := getExpon upxs
puiseux(e,extend(getULS upxs,roundDown(r / e)))
map(fcn,upxs) == puiseux(getExpon upxs,map(fcn,getULS upxs))
characteristic == characteristic$Coef
-- multiplyCoefficients(f,upxs) ==
-- r := getExpon upxs
-- puiseux(r,multiplyCoefficients(f(#1 * r),getULS upxs))
multiplyExponents(upxs:%,n:RN) ==
puiseux(n * getExpon(upxs),getULS upxs)
multiplyExponents(upxs:%,n:PI) ==
puiseux(n * getExpon(upxs),getULS upxs)
if Coef has "*": (Fraction Integer, Coef) -> Coef then
differentiate upxs ==
r := getExpon upxs
puiseux(r,differentiate getULS upxs) * monomial(r :: Coef,r-1)
if Coef has PartialDifferentialRing(Symbol) then
differentiate(upxs:%,s:Symbol) ==
(s = variable(upxs)) => differentiate upxs
dcds := differentiate(center upxs,s)
map(differentiate(#1,s),upxs) - dcds*differentiate(upxs)
if Coef has Algebra Fraction Integer then
coerce(r:RN) == r :: Coef :: %
ratInv: RN -> Coef
ratInv r ==
zero? r => 1
inv(r) :: Coef
integrate upxs ==
not zero? coefficient(upxs,-1) =>
error "integrate: series has term of order -1"
r := getExpon upxs
uls := getULS upxs
uls := multiplyCoefficients(ratInv(#1 * r + 1),uls)
monomial(1,1) * puiseux(r,uls)
if Coef has integrate: (Coef,Symbol) -> Coef and _
Coef has variables: Coef -> List Symbol then
integrate(upxs:%,s:Symbol) ==
(s = variable(upxs)) => integrate upxs
not entry?(s,variables center upxs) => map(integrate(#1,s),upxs)
error "integrate: center is a function of variable of integration"
if Coef has TranscendentalFunctionCategory and _
Coef has PrimitiveFunctionCategory and _
Coef has AlgebraicallyClosedFunctionSpace Integer then
integrateWithOneAnswer: (Coef,Symbol) -> Coef
integrateWithOneAnswer(f,s) ==
res := integrate(f,s)$FunctionSpaceIntegration(I,Coef)
res case Coef => res :: Coef
first(res :: List Coef)
integrate(upxs:%,s:Symbol) ==
(s = variable(upxs)) => integrate upxs
not entry?(s,variables center upxs) =>
map(integrateWithOneAnswer(#1,s),upxs)
error "integrate: center is a function of variable of integration"
if Coef has Field then
(upxs:%) ** (q:RN) ==
num := numer q; den := denom q
one? den => upxs ** num
r := rationalPower upxs; uls := laurentRep upxs
deg := degree uls
if zero?(coef := coefficient(uls,deg)) then
deg := order(uls,deg + 1000)
zero?(coef := coefficient(uls,deg)) =>
error "power of series with many leading zero coefficients"
ulsPow := (uls * monomial(1,-deg)$ULS) ** q
puiseux(r,ulsPow) * monomial(1,deg*q*r)
applyUnary: (ULS -> ULS,%) -> %
applyUnary(fcn,upxs) ==
puiseux(rationalPower upxs,fcn laurentRep upxs)
exp upxs == applyUnary(exp,upxs)
log upxs == applyUnary(log,upxs)
sin upxs == applyUnary(sin,upxs)
cos upxs == applyUnary(cos,upxs)
tan upxs == applyUnary(tan,upxs)
cot upxs == applyUnary(cot,upxs)
sec upxs == applyUnary(sec,upxs)
csc upxs == applyUnary(csc,upxs)
asin upxs == applyUnary(asin,upxs)
acos upxs == applyUnary(acos,upxs)
atan upxs == applyUnary(atan,upxs)
acot upxs == applyUnary(acot,upxs)
asec upxs == applyUnary(asec,upxs)
acsc upxs == applyUnary(acsc,upxs)
sinh upxs == applyUnary(sinh,upxs)
cosh upxs == applyUnary(cosh,upxs)
tanh upxs == applyUnary(tanh,upxs)
coth upxs == applyUnary(coth,upxs)
sech upxs == applyUnary(sech,upxs)
csch upxs == applyUnary(csch,upxs)
asinh upxs == applyUnary(asinh,upxs)
acosh upxs == applyUnary(acosh,upxs)
atanh upxs == applyUnary(atanh,upxs)
acoth upxs == applyUnary(acoth,upxs)
asech upxs == applyUnary(asech,upxs)
acsch upxs == applyUnary(acsch,upxs)
@
\section{domain UPXS UnivariatePuiseuxSeries}
<<domain UPXS UnivariatePuiseuxSeries>>=
)abbrev domain UPXS UnivariatePuiseuxSeries
++ Author: Clifton J. Williamson
++ Date Created: 28 January 1990
++ Date Last Updated: 21 September 1993
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: series, Puiseux
++ Examples:
++ References:
++ Description: Dense Puiseux series in one variable
++ \spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux
++ series in one variable with coefficients in an arbitrary ring. The
++ parameters of the type specify the coefficient ring, the power series
++ variable, and the center of the power series expansion. For example,
++ \spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in
++ \spad{(x - 3)} with \spadtype{Integer} coefficients.
UnivariatePuiseuxSeries(Coef,var,cen): Exports == Implementation where
Coef : Ring
var : Symbol
cen : Coef
I ==> Integer
L ==> List
NNI ==> NonNegativeInteger
OUT ==> OutputForm
RN ==> Fraction Integer
ST ==> Stream Coef
UTS ==> UnivariateTaylorSeries(Coef,var,cen)
ULS ==> UnivariateLaurentSeries(Coef,var,cen)
Exports ==> Join(UnivariatePuiseuxSeriesConstructorCategory(Coef,ULS),_
RetractableTo UTS,CoercibleFrom Variable var) with
differentiate: (%,Variable(var)) -> %
++ \spad{differentiate(f(x),x)} returns the derivative of
++ \spad{f(x)} with respect to \spad{x}.
if Coef has Algebra Fraction Integer then
integrate: (%,Variable(var)) -> %
++ \spad{integrate(f(x))} returns an anti-derivative of the power
++ series \spad{f(x)} with constant coefficient 0.
++ We may integrate a series when we can divide coefficients
++ by integers.
Implementation ==> UnivariatePuiseuxSeriesConstructor(Coef,ULS) add
Rep := Record(expon:RN,lSeries:ULS)
getExpon: % -> RN
getExpon pxs == pxs.expon
variable upxs == var
center upxs == cen
coerce(uts:UTS) == uts :: ULS :: %
retractIfCan(upxs:%):Union(UTS,"failed") ==
(ulsIfCan := retractIfCan(upxs)@Union(ULS,"failed")) case "failed" =>
"failed"
retractIfCan(ulsIfCan :: ULS)
--retract(upxs:%):UTS ==
--(ulsIfCan := retractIfCan(upxs)@Union(ULS,"failed")) case "failed" =>
--error "retractIfCan: series has fractional exponents"
--utsIfCan := retractIfCan(ulsIfCan :: ULS)@Union(UTS,"failed")
--utsIfCan case "failed" =>
--error "retractIfCan: series has negative exponents"
--utsIfCan :: UTS
coerce(v:Variable(var)) ==
zero? cen => monomial(1,1)
monomial(1,1) + monomial(cen,0)
if Coef has "*": (Fraction Integer, Coef) -> Coef then
differentiate(upxs:%,v:Variable(var)) == differentiate upxs
if Coef has Algebra Fraction Integer then
integrate(upxs:%,v:Variable(var)) == integrate upxs
if Coef has coerce: Symbol -> Coef then
if Coef has "**": (Coef,RN) -> Coef then
roundDown: RN -> I
roundDown rn ==
-- returns the largest integer <= rn
(den := denom rn) = 1 => numer rn
n := (num := numer rn) quo den
positive?(num) => n
n - 1
stToCoef: (ST,Coef,NNI,NNI) -> Coef
stToCoef(st,term,n,n0) ==
(n > n0) or (empty? st) => 0
frst(st) * term ** n + stToCoef(rst st,term,n + 1,n0)
approximateLaurent: (ULS,Coef,I) -> Coef
approximateLaurent(x,term,n) ==
(m := n - (e := degree x)) < 0 => 0
app := stToCoef(coefficients taylorRep x,term,0,m :: NNI)
zero? e => app
app * term ** (e :: RN)
approximate(x,r) ==
e := rationalPower(x)
term := ((variable(x) :: Coef) - center(x)) ** e
approximateLaurent(laurentRep x,term,roundDown(r / e))
termOutput:(RN,Coef,OUT) -> OUT
termOutput(k,c,vv) ==
-- creates a term c * vv ** k
k = 0 => c :: OUT
mon :=
k = 1 => vv
vv ** (k :: OUT)
c = 1 => mon
c = -1 => -mon
(c :: OUT) * mon
showAll?:() -> Boolean
-- check a global Lisp variable
showAll?() == true
termsToOutputForm:(RN,RN,ST,OUT) -> OUT
termsToOutputForm(m,rat,uu,xxx) ==
l : L OUT := empty()
empty? uu => 0 :: OUT
count : NNI := _$streamCount$Lisp
n : NNI := 0
while n <= count and not empty? uu repeat
if frst(uu) ~= 0 then
l := concat(termOutput((n :: I) * rat + m,frst uu,xxx),l)
uu := rst uu
n := n + 1
if showAll?() then
n := count + 1
while explicitEntries? uu and _
not eq?(uu,rst uu) repeat
if frst(uu) ~= 0 then
l := concat(termOutput((n :: I) * rat + m,frst uu,xxx),l)
uu := rst uu
n := n + 1
l :=
explicitlyEmpty? uu => l
eq?(uu,rst uu) and frst uu = 0 => l
concat(prefix("O" :: OUT,[xxx ** (((n::I) * rat + m) :: OUT)]),l)
empty? l => 0 :: OUT
reduce("+",reverse! l)
coerce(upxs:%):OUT ==
rat := getExpon upxs; uls := laurentRep upxs
count : I := _$streamCount$Lisp
uls := removeZeroes(_$streamCount$Lisp,uls)
m : RN := (degree uls) * rat
p := coefficients taylorRep uls
xxx :=
zero? cen => var :: OUT
paren(var :: OUT - cen :: OUT)
termsToOutputForm(m,rat,p,xxx)
@
\section{package UPXS2 UnivariatePuiseuxSeriesFunctions2}
<<package UPXS2 UnivariatePuiseuxSeriesFunctions2>>=
)abbrev package UPXS2 UnivariatePuiseuxSeriesFunctions2
++ Mapping package for univariate Puiseux series
++ Author: Scott C. Morrison
++ Date Created: 5 April 1991
++ Date Last Updated: 5 April 1991
++ Keywords: Puiseux series, map
++ Examples:
++ References:
++ Description:
++ Mapping package for univariate Puiseux series.
++ This package allows one to apply a function to the coefficients of
++ a univariate Puiseux series.
UnivariatePuiseuxSeriesFunctions2(Coef1,Coef2,var1,var2,cen1,cen2):_
Exports == Implementation where
Coef1 : Ring
Coef2 : Ring
var1: Symbol
var2: Symbol
cen1: Coef1
cen2: Coef2
UPS1 ==> UnivariatePuiseuxSeries(Coef1, var1, cen1)
UPS2 ==> UnivariatePuiseuxSeries(Coef2, var2, cen2)
ULSP2 ==> UnivariateLaurentSeriesFunctions2(Coef1, Coef2, var1, var2, cen1, cen2)
Exports ==> with
map: (Coef1 -> Coef2,UPS1) -> UPS2
++ \spad{map(f,g(x))} applies the map f to the coefficients of the
++ Puiseux series \spad{g(x)}.
Implementation ==> add
map(f,ups) == puiseux(rationalPower ups, map(f, laurentRep ups)$ULSP2)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<category UPXSCCA UnivariatePuiseuxSeriesConstructorCategory>>
<<domain UPXSCONS UnivariatePuiseuxSeriesConstructor>>
<<domain UPXS UnivariatePuiseuxSeries>>
<<package UPXS2 UnivariatePuiseuxSeriesFunctions2>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|