1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra pfbr.spad}
\author{The Axiom Team}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package PFBRU PolynomialFactorizationByRecursionUnivariate}
<<package PFBRU PolynomialFactorizationByRecursionUnivariate>>=
)abbrev package PFBRU PolynomialFactorizationByRecursionUnivariate
++ PolynomialFactorizationByRecursionUnivariate
++ R is a \spadfun{PolynomialFactorizationExplicit} domain,
++ S is univariate polynomials over R
++ We are interested in handling SparseUnivariatePolynomials over
++ S, is a variable we shall call z
PolynomialFactorizationByRecursionUnivariate(R, S): public == private where
R:PolynomialFactorizationExplicit
S:UnivariatePolynomialCategory(R)
PI ==> PositiveInteger
SupR ==> SparseUnivariatePolynomial R
SupSupR ==> SparseUnivariatePolynomial SupR
SupS ==> SparseUnivariatePolynomial S
SupSupS ==> SparseUnivariatePolynomial SupS
LPEBFS ==> LinearPolynomialEquationByFractions(S)
public == with
solveLinearPolynomialEquationByRecursion: (List SupS, SupS) ->
Union(List SupS,"failed")
++ \spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)}
++ returns the list of polynomials \spad{[q1,...,qn]}
++ such that \spad{sum qi/pi = p / prod pi}, a
++ recursion step for solveLinearPolynomialEquation
++ as defined in \spadfun{PolynomialFactorizationExplicit} category
++ (see \spadfun{solveLinearPolynomialEquation}).
++ If no such list of qi exists, then "failed" is returned.
factorByRecursion: SupS -> Factored SupS
++ factorByRecursion(p) factors polynomial p. This function
++ performs the recursion step for factorPolynomial,
++ as defined in \spadfun{PolynomialFactorizationExplicit} category
++ (see \spadfun{factorPolynomial})
factorSquareFreeByRecursion: SupS -> Factored SupS
++ factorSquareFreeByRecursion(p) returns the square free
++ factorization of p. This functions performs
++ the recursion step for factorSquareFreePolynomial,
++ as defined in \spadfun{PolynomialFactorizationExplicit} category
++ (see \spadfun{factorSquareFreePolynomial}).
randomR: -> R -- has to be global, since has alternative definitions
++ randomR() produces a random element of R
factorSFBRlcUnit: (SupS) -> Factored SupS
++ factorSFBRlcUnit(p) returns the square free factorization of
++ polynomial p
++ (see \spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate})
++ in the case where the leading coefficient of p
++ is a unit.
private == add
supR: SparseUnivariatePolynomial R
pp: SupS
lpolys,factors: List SupS
r:R
lr:List R
import FactoredFunctionUtilities(SupS)
import FactoredFunctions2(SupR,SupS)
import FactoredFunctions2(S,SupS)
import UnivariatePolynomialCategoryFunctions2(S,SupS,R,SupR)
import UnivariatePolynomialCategoryFunctions2(R,SupR,S,SupS)
-- local function declarations
raise: SupR -> SupS
lower: SupS -> SupR
factorSFBRlcUnitInner: (SupS,R) -> Union(Factored SupS,"failed")
hensel: (SupS,R,List SupS) ->
Union(Record(fctrs:List SupS),"failed")
chooseFSQViableSubstitutions: (SupS) ->
Record(substnsField:R,ppRField:SupR)
--++ chooseFSQViableSubstitutions(p), p is a sup
--++ ("sparse univariate polynomial")
--++ over a sup over R, returns a record
--++ \spad{[substnsField: r, ppRField: q]} where r is a substitution point
--++ q is a sup over R so that the (implicit) variable in q
--++ does not drop in degree and remains square-free.
-- here for the moment, until it compiles
-- N.B., we know that R is NOT a FiniteField, since
-- that is meant to have a special implementation, to break the
-- recursion
solveLinearPolynomialEquationByRecursion(lpolys,pp) ==
lhsdeg:="max"/["max"/[degree v for v in coefficients u] for u in lpolys]
rhsdeg:="max"/[degree v for v in coefficients pp]
lhsdeg = 0 =>
lpolysLower:=[lower u for u in lpolys]
answer:List SupS := [0 for u in lpolys]
for i in 0..rhsdeg repeat
ppx:=map(coefficient(#1,i),pp)
zero? ppx => "next"
recAns:= solveLinearPolynomialEquation(lpolysLower,ppx)
recAns case "failed" => return "failed"
answer:=[monomial(1,i)$S * raise c + d
for c in recAns for d in answer]
answer
solveLinearPolynomialEquationByFractions(lpolys,pp)$LPEBFS
-- local function definitions
hensel(pp,r,factors) ==
-- factors is a relatively prime factorization of pp modulo the ideal
-- (x-r), with suitably imposed leading coefficients.
-- This is lifted, without re-combinations, to a factorization
-- return "failed" if this can't be done
origFactors:=factors
totdegree:Integer:=0
proddegree:Integer:=
"max"/[degree(u) for u in coefficients pp]
n:PI:=1
pn:=prime:=monomial(1,1) - r::S
foundFactors:List SupS:=empty()
while (totdegree <= proddegree) repeat
Ecart:=(pp-*/factors) exquo pn
Ecart case "failed" =>
error "failed lifting in hensel in PFBRU"
zero? Ecart =>
-- then we have all the factors
return [append(foundFactors, factors)]
step:=solveLinearPolynomialEquation(origFactors,
map(elt(#1,r::S),
Ecart))
step case "failed" => return "failed" -- must be a false split
factors:=[a+b*pn for a in factors for b in step]
for a in factors for c in origFactors repeat
pp1:= pp exquo a
pp1 case "failed" => "next"
pp:=pp1
proddegree := proddegree - "max"/[degree(u)
for u in coefficients a]
factors:=remove(a,factors)
origFactors:=remove(c,origFactors)
foundFactors:=[a,:foundFactors]
#factors < 2 =>
return [(empty? factors => foundFactors;
[pp,:foundFactors])]
totdegree:= +/["max"/[degree(u)
for u in coefficients u1]
for u1 in factors]
n:=n+1
pn:=pn*prime
"failed" -- must have been a false split
chooseFSQViableSubstitutions(pp) ==
substns:R
ppR: SupR
while true repeat
substns:= randomR()
zero? elt(leadingCoefficient pp,substns ) => "next"
ppR:=map( elt(#1,substns),pp)
degree gcd(ppR,differentiate ppR)>0 => "next"
leave
[substns,ppR]
raise(supR) == map(#1:R::S,supR)
lower(pp) == map(retract(#1)::R,pp)
factorSFBRlcUnitInner(pp,r) ==
-- pp is square-free as a Sup, but the Up variable occurs.
-- Furthermore, its LC is a unit
-- returns "failed" if the substitution is bad, else a factorization
ppR:=map(elt(#1,r),pp)
degree ppR < degree pp => "failed"
degree gcd(ppR,differentiate ppR) >0 => "failed"
factors:=
fDown:=factorSquareFreePolynomial ppR
[raise (unit fDown * factorList(fDown).first.fctr),
:[raise u.fctr for u in factorList(fDown).rest]]
#factors = 1 => makeFR(1,[["irred",pp,1]])
hen:=hensel(pp,r,factors)
hen case "failed" => "failed"
makeFR(1,[["irred",u,1] for u in hen.fctrs])
-- exported function definitions
if R has StepThrough then
factorSFBRlcUnit(pp) ==
val:R := init()
while true repeat
tempAns:=factorSFBRlcUnitInner(pp,val)
not (tempAns case "failed") => return tempAns
val1:=nextItem val
val1 case "failed" =>
error "at this point, we know we have a finite field"
val:=val1
else
factorSFBRlcUnit(pp) ==
val:R := randomR()
while true repeat
tempAns:=factorSFBRlcUnitInner(pp,val)
not (tempAns case "failed") => return tempAns
val := randomR()
if R has StepThrough then
randomCount:R:= init()
randomR() ==
v:=nextItem(randomCount)
v case "failed" =>
SAY$Lisp "Taking another set of random values"
randomCount:=init()
randomCount
randomCount:=v
randomCount
else if R has random: -> R then
randomR() == random()
else randomR() == (random()$Integer rem 100)::R
factorByRecursion pp ==
and/[zero? degree u for u in coefficients pp] =>
map(raise,factorPolynomial lower pp)
c:=content pp
unit? c => refine(squareFree pp,factorSquareFreeByRecursion)
pp:=(pp exquo c)::SupS
mergeFactors(refine(squareFree pp,factorSquareFreeByRecursion),
map(#1:S::SupS,factor(c)$S))
factorSquareFreeByRecursion pp ==
and/[zero? degree u for u in coefficients pp] =>
map(raise,factorSquareFreePolynomial lower pp)
unit? (lcpp := leadingCoefficient pp) => factorSFBRlcUnit(pp)
oldnfact:NonNegativeInteger:= 999999
-- I hope we never have to factor a polynomial
-- with more than this number of factors
lcppPow:S
while true repeat -- a loop over possible false splits
cVS:=chooseFSQViableSubstitutions(pp)
newppR:=primitivePart cVS.ppRField
factorsR:=factorSquareFreePolynomial(newppR)
(nfact:=numberOfFactors factorsR) = 1 =>
return makeFR(1,[["irred",pp,1]])
-- OK, force all leading coefficients to be equal to the leading
-- coefficient of the input
nfact > oldnfact => "next" -- can't be a good reduction
oldnfact:=nfact
lcppR:=leadingCoefficient cVS.ppRField
factors:=[raise((lcppR exquo leadingCoefficient u.fctr) ::R * u.fctr)
for u in factorList factorsR]
-- factors now multiplies to give cVS.ppRField * lcppR^(#factors-1)
-- Now change the leading coefficient to be lcpp
factors:=[monomial(lcpp,degree u) + reductum u for u in factors]
-- factors:=[(lcpp exquo leadingCoefficient u.fctr)::S * raise u.fctr
-- for u in factorList factorsR]
ppAdjust:=(lcppPow:=lcpp**#(rest factors)) * pp
OK:=true
hen:=hensel(ppAdjust,cVS.substnsField,factors)
hen case "failed" => "next"
factors:=hen.fctrs
leave
factors:=[ (lc:=content w;
lcppPow:=(lcppPow exquo lc)::S;
(w exquo lc)::SupS)
for w in factors]
not unit? lcppPow =>
error "internal error in factorSquareFreeByRecursion"
makeFR((recip lcppPow)::S::SupS,
[["irred",w,1] for w in factors])
@
\section{package PFBR PolynomialFactorizationByRecursion}
<<package PFBR PolynomialFactorizationByRecursion>>=
)abbrev package PFBR PolynomialFactorizationByRecursion
++ Description: PolynomialFactorizationByRecursion(R,E,VarSet,S)
++ is used for factorization of sparse univariate polynomials over
++ a domain S of multivariate polynomials over R.
PolynomialFactorizationByRecursion(R,E, VarSet:OrderedSet, S): public ==
private where
R:PolynomialFactorizationExplicit
E:OrderedAbelianMonoidSup
S:PolynomialCategory(R,E,VarSet)
PI ==> PositiveInteger
SupR ==> SparseUnivariatePolynomial R
SupSupR ==> SparseUnivariatePolynomial SupR
SupS ==> SparseUnivariatePolynomial S
SupSupS ==> SparseUnivariatePolynomial SupS
LPEBFS ==> LinearPolynomialEquationByFractions(S)
public == with
solveLinearPolynomialEquationByRecursion: (List SupS, SupS) ->
Union(List SupS,"failed")
++ \spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)}
++ returns the list of polynomials \spad{[q1,...,qn]}
++ such that \spad{sum qi/pi = p / prod pi}, a
++ recursion step for solveLinearPolynomialEquation
++ as defined in \spadfun{PolynomialFactorizationExplicit} category
++ (see \spadfun{solveLinearPolynomialEquation}).
++ If no such list of qi exists, then "failed" is returned.
factorByRecursion: SupS -> Factored SupS
++ factorByRecursion(p) factors polynomial p. This function
++ performs the recursion step for factorPolynomial,
++ as defined in \spadfun{PolynomialFactorizationExplicit} category
++ (see \spadfun{factorPolynomial})
factorSquareFreeByRecursion: SupS -> Factored SupS
++ factorSquareFreeByRecursion(p) returns the square free
++ factorization of p. This functions performs
++ the recursion step for factorSquareFreePolynomial,
++ as defined in \spadfun{PolynomialFactorizationExplicit} category
++ (see \spadfun{factorSquareFreePolynomial}).
randomR: -> R -- has to be global, since has alternative definitions
++ randomR produces a random element of R
bivariateSLPEBR: (List SupS, SupS, VarSet) -> Union(List SupS,"failed")
++ bivariateSLPEBR(lp,p,v) implements
++ the bivariate case of
++ \spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate};
++ its implementation depends on R
factorSFBRlcUnit: (List VarSet, SupS) -> Factored SupS
++ factorSFBRlcUnit(p) returns the square free factorization of
++ polynomial p
++ (see \spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate})
++ in the case where the leading coefficient of p
++ is a unit.
private == add
supR: SparseUnivariatePolynomial R
pp: SupS
lpolys,factors: List SupS
vv:VarSet
lvpolys,lvpp: List VarSet
r:R
lr:List R
import FactoredFunctionUtilities(SupS)
import FactoredFunctions2(S,SupS)
import FactoredFunctions2(SupR,SupS)
import CommuteUnivariatePolynomialCategory(S,SupS, SupSupS)
import UnivariatePolynomialCategoryFunctions2(S,SupS,SupS,SupSupS)
import UnivariatePolynomialCategoryFunctions2(SupS,SupSupS,S,SupS)
import UnivariatePolynomialCategoryFunctions2(S,SupS,R,SupR)
import UnivariatePolynomialCategoryFunctions2(R,SupR,S,SupS)
import UnivariatePolynomialCategoryFunctions2(S,SupS,SupR,SupSupR)
import UnivariatePolynomialCategoryFunctions2(SupR,SupSupR,S,SupS)
hensel: (SupS,VarSet,R,List SupS) ->
Union(Record(fctrs:List SupS),"failed")
chooseSLPEViableSubstitutions: (List VarSet,List SupS,SupS) ->
Record(substnsField:List R,lpolysRField:List SupR,ppRField:SupR)
--++ chooseSLPEViableSubstitutions(lv,lp,p) chooses substitutions
--++ for the variables in first arg (which are all
--++ the variables that exist) so that the polys in second argument don't
--++ drop in degree and remain square-free, and third arg doesn't drop
--++ drop in degree
chooseFSQViableSubstitutions: (List VarSet,SupS) ->
Record(substnsField:List R,ppRField:SupR)
--++ chooseFSQViableSubstitutions(lv,p) chooses substitutions for the variables in first arg (which are all
--++ the variables that exist) so that the second argument poly doesn't
--++ drop in degree and remains square-free
raise: SupR -> SupS
lower: SupS -> SupR
SLPEBR: (List SupS, List VarSet, SupS, List VarSet) ->
Union(List SupS,"failed")
factorSFBRlcUnitInner: (List VarSet, SupS,R) ->
Union(Factored SupS,"failed")
hensel(pp,vv,r,factors) ==
origFactors:=factors
totdegree:Integer:=0
proddegree:Integer:=
"max"/[degree(u,vv) for u in coefficients pp]
n:PI:=1
prime:=vv::S - r::S
foundFactors:List SupS:=empty()
while (totdegree <= proddegree) repeat
pn:=prime**n
Ecart:=(pp-*/factors) exquo pn
Ecart case "failed" =>
error "failed lifting in hensel in PFBR"
zero? Ecart =>
-- then we have all the factors
return [append(foundFactors, factors)]
step:=solveLinearPolynomialEquation(origFactors,
map(eval(#1,vv,r),
Ecart))
step case "failed" => return "failed" -- must be a false split
factors:=[a+b*pn for a in factors for b in step]
for a in factors for c in origFactors repeat
pp1:= pp exquo a
pp1 case "failed" => "next"
pp:=pp1
proddegree := proddegree - "max"/[degree(u,vv)
for u in coefficients a]
factors:=remove(a,factors)
origFactors:=remove(c,origFactors)
foundFactors:=[a,:foundFactors]
#factors < 2 =>
return [(empty? factors => foundFactors;
[pp,:foundFactors])]
totdegree:= +/["max"/[degree(u,vv)
for u in coefficients u1]
for u1 in factors]
n:=n+1
"failed" -- must have been a false split
factorSFBRlcUnitInner(lvpp,pp,r) ==
-- pp is square-free as a Sup, and its coefficients have precisely
-- the variables of lvpp. Furthermore, its LC is a unit
-- returns "failed" if the substitution is bad, else a factorization
ppR:=map(eval(#1,first lvpp,r),pp)
degree ppR < degree pp => "failed"
degree gcd(ppR,differentiate ppR) >0 => "failed"
factors:=
empty? rest lvpp =>
fDown:=factorSquareFreePolynomial map(retract(#1)::R,ppR)
[raise (unit fDown * factorList(fDown).first.fctr),
:[raise u.fctr for u in factorList(fDown).rest]]
fSame:=factorSFBRlcUnit(rest lvpp,ppR)
[unit fSame * factorList(fSame).first.fctr,
:[uu.fctr for uu in factorList(fSame).rest]]
#factors = 1 => makeFR(1,[["irred",pp,1]])
hen:=hensel(pp,first lvpp,r,factors)
hen case "failed" => "failed"
makeFR(1,[["irred",u,1] for u in hen.fctrs])
if R has StepThrough then
factorSFBRlcUnit(lvpp,pp) ==
val:R := init()
while true repeat
tempAns:=factorSFBRlcUnitInner(lvpp,pp,val)
not (tempAns case "failed") => return tempAns
val1:=nextItem val
val1 case "failed" =>
error "at this point, we know we have a finite field"
val:=val1
else
factorSFBRlcUnit(lvpp,pp) ==
val:R := randomR()
while true repeat
tempAns:=factorSFBRlcUnitInner(lvpp,pp,val)
not (tempAns case "failed") => return tempAns
val := randomR()
if R has random: -> R then
randomR() == random()
else randomR() == (random()$Integer)::R
if R has FiniteFieldCategory then
bivariateSLPEBR(lpolys,pp,v) ==
lpolysR:List SupSupR:=[map(univariate,u) for u in lpolys]
ppR: SupSupR:=map(univariate,pp)
ans:=solveLinearPolynomialEquation(lpolysR,ppR)$SupR
ans case "failed" => "failed"
[map(multivariate(#1,v),w) for w in ans]
else
bivariateSLPEBR(lpolys,pp,v) ==
solveLinearPolynomialEquationByFractions(lpolys,pp)$LPEBFS
chooseFSQViableSubstitutions(lvpp,pp) ==
substns:List R
ppR: SupR
while true repeat
substns:= [randomR() for v in lvpp]
zero? eval(leadingCoefficient pp,lvpp,substns ) => "next"
ppR:=map((retract eval(#1,lvpp,substns))::R,pp)
degree gcd(ppR,differentiate ppR)>0 => "next"
leave
[substns,ppR]
chooseSLPEViableSubstitutions(lvpolys,lpolys,pp) ==
substns:List R
lpolysR:List SupR
ppR: SupR
while true repeat
substns:= [randomR() for v in lvpolys]
zero? eval(leadingCoefficient pp,lvpolys,substns ) => "next"
"or"/[zero? eval(leadingCoefficient u,lvpolys,substns)
for u in lpolys] => "next"
lpolysR:=[map((retract eval(#1,lvpolys,substns))::R,u)
for u in lpolys]
uu:=lpolysR
while not empty? uu repeat
"or"/[ degree(gcd(uu.first,v))>0 for v in uu.rest] => leave
uu:=rest uu
not empty? uu => "next"
leave
ppR:=map((retract eval(#1,lvpolys,substns))::R,pp)
[substns,lpolysR,ppR]
raise(supR) == map(#1:R::S,supR)
lower(pp) == map(retract(#1)::R,pp)
SLPEBR(lpolys,lvpolys,pp,lvpp) ==
not empty? (m:=setDifference(lvpp,lvpolys)) =>
v:=first m
lvpp:=remove(v,lvpp)
pp1:SupSupS :=swap map(univariate(#1,v),pp)
-- pp1 is mathematically equal to pp, but is in S[z][v]
-- so we wish to operate on all of its coefficients
ans:List SupSupS:= [0 for u in lpolys]
for m in reverse_! monomials pp1 repeat
ans1:=SLPEBR(lpolys,lvpolys,leadingCoefficient m,lvpp)
ans1 case "failed" => return "failed"
d:=degree m
ans:=[monomial(a1,d)+a for a in ans for a1 in ans1]
[map(multivariate(#1,v),swap pp1) for pp1 in ans]
empty? lvpolys =>
lpolysR:List SupR
ppR:SupR
lpolysR:=[map(retract,u) for u in lpolys]
ppR:=map(retract,pp)
ansR:=solveLinearPolynomialEquation(lpolysR,ppR)
ansR case "failed" => return "failed"
[map(#1::S,uu) for uu in ansR]
cVS:=chooseSLPEViableSubstitutions(lvpolys,lpolys,pp)
ansR:=solveLinearPolynomialEquation(cVS.lpolysRField,cVS.ppRField)
ansR case "failed" => "failed"
#lvpolys = 1 => bivariateSLPEBR(lpolys,pp, first lvpolys)
solveLinearPolynomialEquationByFractions(lpolys,pp)$LPEBFS
solveLinearPolynomialEquationByRecursion(lpolys,pp) ==
lvpolys := removeDuplicates_!
concat [ concat [variables z for z in coefficients u]
for u in lpolys]
lvpp := removeDuplicates_!
concat [variables z for z in coefficients pp]
SLPEBR(lpolys,lvpolys,pp,lvpp)
factorByRecursion pp ==
lv:List(VarSet) := removeDuplicates_!
concat [variables z for z in coefficients pp]
empty? lv =>
map(raise,factorPolynomial lower pp)
c:=content pp
unit? c => refine(squareFree pp,factorSquareFreeByRecursion)
pp:=(pp exquo c)::SupS
mergeFactors(refine(squareFree pp,factorSquareFreeByRecursion),
map(#1:S::SupS,factor(c)$S))
factorSquareFreeByRecursion pp ==
lv:List(VarSet) := removeDuplicates_!
concat [variables z for z in coefficients pp]
empty? lv =>
map(raise,factorPolynomial lower pp)
unit? (lcpp := leadingCoefficient pp) => factorSFBRlcUnit(lv,pp)
oldnfact:NonNegativeInteger:= 999999
-- I hope we never have to factor a polynomial
-- with more than this number of factors
lcppPow:S
while true repeat
cVS:=chooseFSQViableSubstitutions(lv,pp)
factorsR:=factorSquareFreePolynomial(cVS.ppRField)
(nfact:=numberOfFactors factorsR) = 1 =>
return makeFR(1,[["irred",pp,1]])
-- OK, force all leading coefficients to be equal to the leading
-- coefficient of the input
nfact > oldnfact => "next" -- can't be a good reduction
oldnfact:=nfact
factors:=[(lcpp exquo leadingCoefficient u.fctr)::S * raise u.fctr
for u in factorList factorsR]
ppAdjust:=(lcppPow:=lcpp**#(rest factors)) * pp
lvppList:=lv
OK:=true
for u in lvppList for v in cVS.substnsField repeat
hen:=hensel(ppAdjust,u,v,factors)
hen case "failed" =>
OK:=false
"leave"
factors:=hen.fctrs
OK => leave
factors:=[ (lc:=content w;
lcppPow:=(lcppPow exquo lc)::S;
(w exquo lc)::SupS)
for w in factors]
not unit? lcppPow =>
error "internal error in factorSquareFreeByRecursion"
makeFR((recip lcppPow)::S::SupS,
[["irred",w,1] for w in factors])
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package PFBRU PolynomialFactorizationByRecursionUnivariate>>
<<package PFBR PolynomialFactorizationByRecursion>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|