1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra partperm.spad}
\author{William Burge}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package PARTPERM PartitionsAndPermutations}
<<package PARTPERM PartitionsAndPermutations>>=
)abbrev package PARTPERM PartitionsAndPermutations
++ Author: William H. Burge
++ Date Created: 29 October 1987
++ Date Last Updated: 3 April 1991
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: partition, permutation
++ References:
++ Description: PartitionsAndPermutations contains
++ functions for generating streams of integer partitions,
++ and streams of sequences of integers
++ composed from a multi-set.
PartitionsAndPermutations: Exports == Implementation where
I ==> Integer
L ==> List
ST ==> Stream
ST1 ==> StreamFunctions1
ST2 ==> StreamFunctions2
ST3 ==> StreamFunctions3
Exports ==> with
partitions: (I,I,I) -> ST L I
++\spad{partitions(p,l,n)} is the stream of partitions
++ of n whose number of parts is no greater than p
++ and whose largest part is no greater than l.
partitions: I -> ST L I
++\spad{partitions(n)} is the stream of all partitions of n.
partitions: (I,I) -> ST L I
++\spad{partitions(p,l)} is the stream of all
++ partitions whose number of
++ parts and largest part are no greater than p and l.
conjugate: L I -> L I
++\spad{conjugate(pt)} is the conjugate of the partition pt.
conjugates: ST L I -> ST L I
++\spad{conjugates(lp)} is the stream of conjugates of a stream
++ of partitions lp.
shuffle: (L I,L I) -> ST L I
++\spad{shuffle(l1,l2)} forms the stream of all shuffles of l1
++ and l2, i.e. all sequences that can be formed from
++ merging l1 and l2.
shufflein: (L I,ST L I) -> ST L I
++\spad{shufflein(l,st)} maps shuffle(l,u) on to all
++ members u of st, concatenating the results.
sequences: (L I,L I) -> ST L I
++\spad{sequences(l1,l2)} is the stream of all sequences that
++ can be composed from the multiset defined from
++ two lists of integers l1 and l2.
++ For example,the pair \spad{([1,2,4],[2,3,5])} represents
++ multi-set with 1 \spad{2}, 2 \spad{3}'s, and 4 \spad{5}'s.
sequences: L I -> ST L I
++ \spad{sequences([l0,l1,l2,..,ln])} is the set of
++ all sequences formed from
++ \spad{l0} 0's,\spad{l1} 1's,\spad{l2} 2's,...,\spad{ln} n's.
permutations: I -> ST L I
++\spad{permutations(n)} is the stream of permutations
++ formed from \spad{1,2,3,...,n}.
Implementation ==> add
partitions(M,N,n) ==
zero? n => concat(empty()$L(I),empty()$(ST L I))
zero? M or zero? N or n < 0 => empty()
c := map(concat(N,#1),partitions(M - 1,N,n - N))
concat(c,partitions(M,N - 1,n))
partitions n == partitions(n,n,n)
partitions(M,N)==
aaa : L ST L I := [partitions(M,N,i) for i in 0..M*N]
concat(aaa :: ST ST L I)$ST1(L I)
-- nogreq(n,l) is the number of elements of l that are greater or
-- equal to n
nogreq: (I,L I) -> I
nogreq(n,x) == +/[1 for i in x | i >= n]
conjugate x ==
empty? x => empty()
[nogreq(i,x) for i in 1..first x]
conjugates z == map(conjugate,z)
shuffle(x,y)==
empty? x => concat(y,empty())$(ST L I)
empty? y => concat(x,empty())$(ST L I)
concat(map(concat(first x,#1),shuffle(rest x,y)),_
map(concat(first y,#1),shuffle(x,rest y)))
shufflein(x,yy) ==
concat(map(shuffle(x,#1),yy)$ST2(L I,ST L I))$ST1(L I)
-- rpt(n,m) is the list of n m's
rpt: (I,I) -> L I
rpt(n,m) == [m for i in 1..n]
-- zrpt(x,y) where x is [x0,x1,x2...] and y is [y0,y1,y2...]
-- is the stream [rpt(x0,y0),rpt(x1,y1),...]
zrpt: (L I,L I) -> ST L I
zrpt(x,y) == map(rpt,x :: ST I,y :: ST I)$ST3(I,I,L I)
sequences(x,y) ==
reduce(concat(empty()$L(I),empty()$(ST L I)),_
shufflein,zrpt(x,y))$ST2(L I,ST L I)
sequences x == sequences(x,[i for i in 0..#x-1])
permutations n == sequences(rpt(n,1),[i for i in 1..n])
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package PARTPERM PartitionsAndPermutations>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|