1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra numsolve.spad}
\author{Patrizia Gianni}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package INFSP InnerNumericFloatSolvePackage}
<<package INFSP InnerNumericFloatSolvePackage>>=
)abbrev package INFSP InnerNumericFloatSolvePackage
++ Author: P. Gianni
++ Date Created: January 1990
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This is an internal package
++ for computing approximate solutions to systems of polynomial equations.
++ The parameter K specifies the coefficient field of the input polynomials
++ and must be either \spad{Fraction(Integer)} or \spad{Complex(Fraction Integer)}.
++ The parameter F specifies where the solutions must lie and can
++ be one of the following: \spad{Float}, \spad{Fraction(Integer)}, \spad{Complex(Float)},
++ \spad{Complex(Fraction Integer)}. The last parameter specifies the type
++ of the precision operand and must be either \spad{Fraction(Integer)} or \spad{Float}.
InnerNumericFloatSolvePackage(K,F,Par): Cat == Cap where
F : Field -- this is the field where the answer will be
K : GcdDomain -- type of the input
Par : Join(Field, OrderedRing ) -- it will be NF or RN
I ==> Integer
NNI ==> NonNegativeInteger
P ==> Polynomial
EQ ==> Equation
L ==> List
SUP ==> SparseUnivariatePolynomial
RN ==> Fraction Integer
NF ==> Float
CF ==> Complex Float
GI ==> Complex Integer
GRN ==> Complex RN
SE ==> Symbol
RFI ==> Fraction P I
Cat == with
innerSolve1 : (SUP K,Par) -> L F
++ innerSolve1(up,eps) returns the list of the zeros
++ of the univariate polynomial up with precision eps.
innerSolve1 : (P K,Par) -> L F
++ innerSolve1(p,eps) returns the list of the zeros
++ of the polynomial p with precision eps.
innerSolve : (L P K,L P K,L SE,Par) -> L L F
++ innerSolve(lnum,lden,lvar,eps) returns a list of
++ solutions of the system of polynomials lnum, with
++ the side condition that none of the members of lden
++ vanish identically on any solution. Each solution
++ is expressed as a list corresponding to the list of
++ variables in lvar and with precision specified by eps.
makeEq : (L F,L SE) -> L EQ P F
++ makeEq(lsol,lvar) returns a list of equations formed
++ by corresponding members of lvar and lsol.
Cap == add
------ Local Functions ------
isGeneric? : (L P K,L SE) -> Boolean
evaluate : (P K,SE,SE,F) -> F
numeric : K -> F
oldCoord : (L F,L I) -> L F
findGenZeros : (L P K,L SE,Par) -> L L F
failPolSolve : (L P K,L SE) -> Union(L L P K,"failed")
numeric(r:K):F ==
K is I =>
F is Float => r::I::Float
F is RN => r::I::RN
F is CF => r::I::CF
F is GRN => r::I::GRN
K is GI =>
gr:GI := r::GI
F is GRN => complex(real(gr)::RN,imag(gr)::RN)$GRN
F is CF => convert(gr)
error "case not handled"
-- construct the equation
makeEq(nres:L F,lv:L SE) : L EQ P F ==
[equation(x::(P F),r::(P F)) for x in lv for r in nres]
evaluate(pol:P K,xvar:SE,zvar:SE,z:F):F ==
rpp:=map(numeric,pol)$PolynomialFunctions2(K,F)
rpp := eval(rpp,zvar,z)
upol:=univariate(rpp,xvar)
retract(-coefficient(upol,0))/retract(leadingCoefficient upol)
myConvert(eps:Par) : RN ==
Par is RN => eps
Par is NF => retract(eps)$NF
innerSolve1(pol:P K,eps:Par) : L F == innerSolve1(univariate pol,eps)
innerSolve1(upol:SUP K,eps:Par) : L F ==
K is GI and (Par is RN or Par is NF) =>
(complexZeros(upol,
eps)$ComplexRootPackage(SUP K,Par)) pretend L(F)
K is I =>
F is Float =>
z:= realZeros(upol,myConvert eps)$RealZeroPackage(SUP I)
[convert((1/2)*(x.left+x.right))@Float for x in z] pretend L(F)
F is RN =>
z:= realZeros(upol,myConvert eps)$RealZeroPackage(SUP I)
[(1/2)*(x.left + x.right) for x in z] pretend L(F)
error "improper arguments to INFSP"
error "improper arguments to INFSP"
-- find the zeros of components in "generic" position --
findGenZeros(lp:L P K,rlvar:L SE,eps:Par) : L L F ==
rlp:=reverse lp
f:=rlp.first
zvar:= rlvar.first
rlp:=rlp.rest
lz:=innerSolve1(f,eps)
[reverse cons(z,[evaluate(pol,xvar,zvar,z) for pol in rlp
for xvar in rlvar.rest]) for z in lz]
-- convert to the old coordinates --
oldCoord(numres:L F,lval:L I) : L F ==
rnumres:=reverse numres
rnumres.first:= rnumres.first +
(+/[n*nr for n in lval for nr in rnumres.rest])
reverse rnumres
-- real zeros of a system of 2 polynomials lp (incomplete)
innerSolve2(lp:L P K,lv:L SE,eps: Par):L L F ==
mainvar := first lv
up1:=univariate(lp.1, mainvar)
up2:=univariate(lp.2, mainvar)
vec := subresultantVector(up1,up2)$SubResultantPackage(P K,SUP P K)
p0 := primitivePart multivariate(vec.0, mainvar)
p1 := primitivePart(multivariate(vec.1, mainvar),mainvar)
zero? p1 or
gcd(p0, leadingCoefficient(univariate(p1,mainvar))) ~=1 =>
innerSolve(cons(0,lp),empty(),lv,eps)
findGenZeros([p1, p0], reverse lv, eps)
-- real zeros of the system of polynomial lp --
innerSolve(lp:L P K,ld:L P K,lv:L SE,eps: Par) : L L F ==
-- empty?(ld) and (#lv = 2) and (# lp = 2) => innerSolve2(lp, lv, eps)
lnp:= [pToDmp(p)$PolToPol(lv,K) for p in lp]
OV:=OrderedVariableList(lv)
lvv:L OV:= [variable(vv)::OV for vv in lv]
DP:=DirectProduct(#lv,NonNegativeInteger)
dmp:=DistributedMultivariatePolynomial(lv,K)
lq:L dmp:=[]
if ld~=[] then
lq:= [(pToDmp(q1)$PolToPol(lv,K)) pretend dmp for q1 in ld]
partRes:=groebSolve(lnp,lvv)$GroebnerSolve(lv,K,K) pretend (L L dmp)
partRes=list [] => []
-- remove components where denominators vanish
if lq~=[] then
gb:=GroebnerInternalPackage(K,DirectProduct(#lv,NNI),OV,dmp)
partRes:=[pr for pr in partRes|
and/[(redPol(fq,pr pretend List(dmp))$gb) ~=0
for fq in lq]]
-- select the components in "generic" form
rlv:=reverse lv
rrlvv:= rest reverse lvv
listGen:L L dmp:=[]
for res in partRes repeat
res1:=rest reverse res
"and"/[("max"/degree(f,rrlvv))=1 for f in res1] =>
listGen:=concat(res pretend (L dmp),listGen)
result:L L F := []
if listGen~=[] then
listG :L L P K:=
[[dmpToP(pf)$PolToPol(lv,K) for pf in pr] for pr in listGen]
result:=
"append"/[findGenZeros(res,rlv,eps) for res in listG]
for gres in listGen repeat
partRes:=delete(partRes,position(gres,partRes))
-- adjust the non-generic components
for gres in partRes repeat
genRecord := genericPosition(gres,lvv)$GroebnerSolve(lv,K,K)
lgen := genRecord.dpolys
lval := genRecord.coords
lgen1:=[dmpToP(pf)$PolToPol(lv,K) for pf in lgen]
lris:=findGenZeros(lgen1,rlv,eps)
result:= append([oldCoord(r,lval) for r in lris],result)
result
@
\section{package FLOATRP FloatingRealPackage}
<<package FLOATRP FloatingRealPackage>>=
)abbrev package FLOATRP FloatingRealPackage
++ Author: P. Gianni
++ Date Created: January 1990
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors: SystemSolvePackage, RadicalSolvePackage,
++ FloatingComplexPackage
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This is a package for the approximation of real solutions for
++ systems of polynomial equations over the rational numbers.
++ The results are expressed as either rational numbers or floats
++ depending on the type of the precision parameter which can be
++ either a rational number or a floating point number.
FloatingRealPackage(Par): Cat == Cap where
I ==> Integer
NNI ==> NonNegativeInteger
P ==> Polynomial
EQ ==> Equation
L ==> List
SUP ==> SparseUnivariatePolynomial
RN ==> Fraction Integer
NF ==> Float
CF ==> Complex Float
GI ==> Complex Integer
GRN ==> Complex RN
SE ==> Symbol
RFI ==> Fraction P I
INFSP ==> InnerNumericFloatSolvePackage
Par : Join(OrderedRing, Field) -- RN or NewFloat
Cat == with
solve: (L RFI,Par) -> L L EQ P Par
++ solve(lp,eps) finds all of the real solutions of the
++ system lp of rational functions over the rational numbers
++ with respect to all the variables appearing in lp,
++ with precision eps.
solve: (L EQ RFI,Par) -> L L EQ P Par
++ solve(leq,eps) finds all of the real solutions of the
++ system leq of equationas of rational functions
++ with respect to all the variables appearing in lp,
++ with precision eps.
solve: (RFI,Par) -> L EQ P Par
++ solve(p,eps) finds all of the real solutions of the
++ univariate rational function p with rational coefficients
++ with respect to the unique variable appearing in p,
++ with precision eps.
solve: (EQ RFI,Par) -> L EQ P Par
++ solve(eq,eps) finds all of the real solutions of the
++ univariate equation eq of rational functions
++ with respect to the unique variables appearing in eq,
++ with precision eps.
realRoots: (L RFI,L SE,Par) -> L L Par
++ realRoots(lp,lv,eps) computes the list of the real
++ solutions of the list lp of rational functions with rational
++ coefficients with respect to the variables in lv,
++ with precision eps. Each solution is expressed as a list
++ of numbers in order corresponding to the variables in lv.
realRoots : (RFI,Par) -> L Par
++ realRoots(rf, eps) finds the real zeros of a univariate
++ rational function with precision given by eps.
Cap == add
makeEq(nres:L Par,lv:L SE) : L EQ P Par ==
[equation(x::(P Par),r::(P Par)) for x in lv for r in nres]
-- find the real zeros of an univariate rational polynomial --
realRoots(p:RFI,eps:Par) : L Par ==
innerSolve1(numer p,eps)$INFSP(I,Par,Par)
-- real zeros of the system of polynomial lp --
realRoots(lp:L RFI,lv:L SE,eps: Par) : L L Par ==
lnum:=[numer p for p in lp]
lden:=[dp for p in lp |(dp:=denom p)~=1]
innerSolve(lnum,lden,lv,eps)$INFSP(I,Par,Par)
solve(lp:L RFI,eps : Par) : L L EQ P Par ==
lnum:=[numer p for p in lp]
lden:=[dp for p in lp |(dp:=denom p)~=1]
lv:="setUnion"/[variables np for np in lnum]
if lden~=[] then
lv:=setUnion(lv,"setUnion"/[variables dp for dp in lden])
[makeEq(numres,lv) for numres
in innerSolve(lnum,lden,lv,eps)$INFSP(I,Par,Par)]
solve(le:L EQ RFI,eps : Par) : L L EQ P Par ==
lp:=[lhs ep - rhs ep for ep in le]
lnum:=[numer p for p in lp]
lden:=[dp for p in lp |(dp:=denom p)~=1]
lv:="setUnion"/[variables np for np in lnum]
if lden~=[] then
lv:=setUnion(lv,"setUnion"/[variables dp for dp in lden])
[makeEq(numres,lv) for numres
in innerSolve(lnum,lden,lv,eps)$INFSP(I,Par,Par)]
solve(p : RFI,eps : Par) : L EQ P Par ==
(mvar := mainVariable numer p ) case "failed" =>
error "no variable found"
x:P Par:=mvar::SE::(P Par)
[equation(x,val::(P Par)) for val in realRoots(p,eps)]
solve(eq : EQ RFI,eps : Par) : L EQ P Par ==
solve(lhs eq - rhs eq,eps)
@
\section{package FLOATCP FloatingComplexPackage}
<<package FLOATCP FloatingComplexPackage>>=
)abbrev package FLOATCP FloatingComplexPackage
++ Author: P. Gianni
++ Date Created: January 1990
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors: SystemSolvePackage, RadicalSolvePackage,
++ FloatingRealPackage
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This is a package for the approximation of complex solutions for
++ systems of equations of rational functions with complex rational
++ coefficients. The results are expressed as either complex rational
++ numbers or complex floats depending on the type of the precision
++ parameter which can be either a rational number or a floating point number.
FloatingComplexPackage(Par): Cat == Cap where
Par : Join(Field, OrderedRing)
K ==> GI
FPK ==> Fraction P K
C ==> Complex
I ==> Integer
NNI ==> NonNegativeInteger
P ==> Polynomial
EQ ==> Equation
L ==> List
SUP ==> SparseUnivariatePolynomial
RN ==> Fraction Integer
NF ==> Float
CF ==> Complex Float
GI ==> Complex Integer
GRN ==> Complex RN
SE ==> Symbol
RFI ==> Fraction P I
INFSP ==> InnerNumericFloatSolvePackage
Cat == with
complexSolve: (L FPK,Par) -> L L EQ P C Par
++ complexSolve(lp,eps) finds all the complex solutions to
++ precision eps of the system lp of rational functions
++ over the complex rationals with respect to all the
++ variables appearing in lp.
complexSolve: (L EQ FPK,Par) -> L L EQ P C Par
++ complexSolve(leq,eps) finds all the complex solutions
++ to precision eps of the system leq of equations
++ of rational functions over complex rationals
++ with respect to all the variables appearing in lp.
complexSolve: (FPK,Par) -> L EQ P C Par
++ complexSolve(p,eps) find all the complex solutions of the
++ rational function p with complex rational coefficients
++ with respect to all the variables appearing in p,
++ with precision eps.
complexSolve: (EQ FPK,Par) -> L EQ P C Par
++ complexSolve(eq,eps) finds all the complex solutions of the
++ equation eq of rational functions with rational rational coefficients
++ with respect to all the variables appearing in eq,
++ with precision eps.
complexRoots : (FPK,Par) -> L C Par
++ complexRoots(rf, eps) finds all the complex solutions of a
++ univariate rational function with rational number coefficients.
++ The solutions are computed to precision eps.
complexRoots : (L FPK,L SE,Par) -> L L C Par
++ complexRoots(lrf, lv, eps) finds all the complex solutions of a
++ list of rational functions with rational number coefficients
++ with respect the the variables appearing in lv.
++ Each solution is computed to precision eps and returned as
++ list corresponding to the order of variables in lv.
Cap == add
-- find the complex zeros of an univariate polynomial --
complexRoots(q:FPK,eps:Par) : L C Par ==
p:=numer q
complexZeros(univariate p,eps)$ComplexRootPackage(SUP GI, Par)
-- find the complex zeros of an univariate polynomial --
complexRoots(lp:L FPK,lv:L SE,eps:Par) : L L C Par ==
lnum:=[numer p for p in lp]
lden:=[dp for p in lp |(dp:=denom p)~=1]
innerSolve(lnum,lden,lv,eps)$INFSP(K,C Par,Par)
complexSolve(lp:L FPK,eps : Par) : L L EQ P C Par ==
lnum:=[numer p for p in lp]
lden:=[dp for p in lp |(dp:=denom p)~=1]
lv:="setUnion"/[variables np for np in lnum]
if lden~=[] then
lv:=setUnion(lv,"setUnion"/[variables dp for dp in lden])
[[equation(x::(P C Par),r::(P C Par)) for x in lv for r in nres]
for nres in innerSolve(lnum,lden,lv,eps)$INFSP(K,C Par,Par)]
complexSolve(le:L EQ FPK,eps : Par) : L L EQ P C Par ==
lp:=[lhs ep - rhs ep for ep in le]
lnum:=[numer p for p in lp]
lden:=[dp for p in lp |(dp:=denom p)~=1]
lv:="setUnion"/[variables np for np in lnum]
if lden~=[] then
lv:=setUnion(lv,"setUnion"/[variables dp for dp in lden])
[[equation(x::(P C Par),r::(P C Par)) for x in lv for r in nres]
for nres in innerSolve(lnum,lden,lv,eps)$INFSP(K,C Par,Par)]
complexSolve(p : FPK,eps : Par) : L EQ P C Par ==
(mvar := mainVariable numer p ) case "failed" =>
error "no variable found"
x:P C Par:=mvar::SE::(P C Par)
[equation(x,val::(P C Par)) for val in complexRoots(p,eps)]
complexSolve(eq : EQ FPK,eps : Par) : L EQ P C Par ==
complexSolve(lhs eq - rhs eq,eps)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package INFSP InnerNumericFloatSolvePackage>>
<<package FLOATRP FloatingRealPackage>>
<<package FLOATCP FloatingComplexPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|