1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra numquad.spad}
\author{Yurij Baransky}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package NUMQUAD NumericalQuadrature}
<<package NUMQUAD NumericalQuadrature>>=
)abbrev package NUMQUAD NumericalQuadrature
++ Author: Yurij A. Baransky
++ Date Created: October 90
++ Date Last Updated: October 90
++ Basic Operations:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This suite of routines performs numerical quadrature using
++ algorithms derived from the basic trapezoidal rule. Because
++ the error term of this rule contains only even powers of the
++ step size (for open and closed versions), fast convergence
++ can be obtained if the integrand is sufficiently smooth.
++
++ Each routine returns a Record of type TrapAns, which contains\indent{3}
++ \newline value (\spadtype{Float}):\tab{20} estimate of the integral
++ \newline error (\spadtype{Float}):\tab{20} estimate of the error in the computation
++ \newline totalpts (\spadtype{Integer}):\tab{20} total number of function evaluations
++ \newline success (\spadtype{Boolean}):\tab{20} if the integral was computed within the user specified error criterion
++ \indent{0}\indent{0}
++ To produce this estimate, each routine generates an internal
++ sequence of sub-estimates, denoted by {\em S(i)}, depending on the
++ routine, to which the various convergence criteria are applied.
++ The user must supply a relative accuracy, \spad{eps_r}, and an absolute
++ accuracy, \spad{eps_a}. Convergence is obtained when either
++ \center{\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}}
++ \center{or \spad{ABS(S(i) - S(i-1)) < eps_a}}
++ are true statements.
++
++ The routines come in three families and three flavors:
++ \newline\tab{3} closed:\tab{20}romberg,\tab{30}simpson,\tab{42}trapezoidal
++ \newline\tab{3} open: \tab{20}rombergo,\tab{30}simpsono,\tab{42}trapezoidalo
++ \newline\tab{3} adaptive closed:\tab{20}aromberg,\tab{30}asimpson,\tab{42}atrapezoidal
++ \par
++ The {\em S(i)} for the trapezoidal family is the value of the
++ integral using an equally spaced absicca trapezoidal rule for
++ that level of refinement.
++ \par
++ The {\em S(i)} for the simpson family is the value of the integral
++ using an equally spaced absicca simpson rule for that level of
++ refinement.
++ \par
++ The {\em S(i)} for the romberg family is the estimate of the integral
++ using an equally spaced absicca romberg method. For
++ the \spad{i}-th level, this is an appropriate combination of all the
++ previous trapezodial estimates so that the error term starts
++ with the \spad{2*(i+1)} power only.
++ \par
++ The three families come in a closed version, where the formulas
++ include the endpoints, an open version where the formulas do not
++ include the endpoints and an adaptive version, where the user
++ is required to input the number of subintervals over which the
++ appropriate closed family integrator will apply with the usual
++ convergence parmeters for each subinterval. This is useful
++ where a large number of points are needed only in a small fraction
++ of the entire domain.
++ \par
++ Each routine takes as arguments:
++ \newline f\tab{10} integrand
++ \newline a\tab{10} starting point
++ \newline b\tab{10} ending point
++ \newline \spad{eps_r}\tab{10} relative error
++ \newline \spad{eps_a}\tab{10} absolute error
++ \newline \spad{nmin} \tab{10} refinement level when to start checking for convergence (> 1)
++ \newline \spad{nmax} \tab{10} maximum level of refinement
++ \par
++ The adaptive routines take as an additional parameter
++ \newline \spad{nint}\tab{10} the number of independent intervals to apply a closed
++ family integrator of the same name.
++ \par Notes:
++ \newline Closed family level i uses \spad{1 + 2**i} points.
++ \newline Open family level i uses \spad{1 + 3**i} points.
NumericalQuadrature(): Exports == Implementation where
L ==> List
V ==> Vector
I ==> Integer
B ==> Boolean
E ==> OutputForm
F ==> Float
PI ==> PositiveInteger
OFORM ==> OutputForm
TrapAns ==> Record(value:F, error:F, totalpts:I, success:B )
Exports ==> with
aromberg : (F -> F,F,F,F,F,I,I,I) -> TrapAns
++ aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)
++ uses the adaptive romberg method to numerically integrate function
++ \spad{fn} over the closed interval from \spad{a} to \spad{b},
++ with relative accuracy \spad{epsrel} and absolute accuracy
++ \spad{epsabs}, with the refinement levels for convergence checking
++ vary from \spad{nmin} to \spad{nmax}, and where \spad{nint}
++ is the number of independent intervals to apply the integrator.
++ The value returned is a record containing the value of the integral,
++ the estimate of the error in the computation, the total number of
++ function evaluations, and either a boolean value which is true if
++ the integral was computed within the user specified error criterion.
++ See \spadtype{NumericalQuadrature} for details.
asimpson : (F -> F,F,F,F,F,I,I,I) -> TrapAns
++ asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint) uses the
++ adaptive simpson method to numerically integrate function \spad{fn}
++ over the closed interval from \spad{a} to \spad{b}, with relative
++ accuracy \spad{epsrel} and absolute accuracy \spad{epsabs}, with the
++ refinement levels for convergence checking vary from \spad{nmin}
++ to \spad{nmax}, and where \spad{nint} is the number of independent
++ intervals to apply the integrator. The value returned is a record
++ containing the value of the integral, the estimate of the error in
++ the computation, the total number of function evaluations, and
++ either a boolean value which is true if the integral was computed
++ within the user specified error criterion.
++ See \spadtype{NumericalQuadrature} for details.
atrapezoidal : (F -> F,F,F,F,F,I,I,I) -> TrapAns
++ atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint) uses the
++ adaptive trapezoidal method to numerically integrate function
++ \spad{fn} over the closed interval from \spad{a} to \spad{b}, with
++ relative accuracy \spad{epsrel} and absolute accuracy \spad{epsabs},
++ with the refinement levels for convergence checking vary from
++ \spad{nmin} to \spad{nmax}, and where \spad{nint} is the number
++ of independent intervals to apply the integrator. The value returned
++ is a record containing the value of the integral, the estimate of
++ the error in the computation, the total number of function
++ evaluations, and either a boolean value which is true if
++ the integral was computed within the user specified error criterion.
++ See \spadtype{NumericalQuadrature} for details.
romberg : (F -> F,F,F,F,F,I,I) -> TrapAns
++ romberg(fn,a,b,epsrel,epsabs,nmin,nmax) uses the romberg
++ method to numerically integrate function \spadvar{fn} over the closed
++ interval \spad{a} to \spad{b}, with relative accuracy \spad{epsrel}
++ and absolute accuracy \spad{epsabs}, with the refinement levels
++ for convergence checking vary from \spad{nmin} to \spad{nmax}.
++ The value returned is a record containing the value
++ of the integral, the estimate of the error in the computation, the
++ total number of function evaluations, and either a boolean value
++ which is true if the integral was computed within the user specified
++ error criterion. See \spadtype{NumericalQuadrature} for details.
simpson : (F -> F,F,F,F,F,I,I) -> TrapAns
++ simpson(fn,a,b,epsrel,epsabs,nmin,nmax) uses the simpson
++ method to numerically integrate function \spad{fn} over the closed
++ interval \spad{a} to \spad{b}, with
++ relative accuracy \spad{epsrel} and absolute accuracy \spad{epsabs},
++ with the refinement levels for convergence checking vary from
++ \spad{nmin} to \spad{nmax}. The value returned
++ is a record containing the value of the integral, the estimate of
++ the error in the computation, the total number of function
++ evaluations, and either a boolean value which is true if
++ the integral was computed within the user specified error criterion.
++ See \spadtype{NumericalQuadrature} for details.
trapezoidal : (F -> F,F,F,F,F,I,I) -> TrapAns
++ trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax) uses the
++ trapezoidal method to numerically integrate function \spadvar{fn} over
++ the closed interval \spad{a} to \spad{b}, with relative accuracy
++ \spad{epsrel} and absolute accuracy \spad{epsabs}, with the
++ refinement levels for convergence checking vary
++ from \spad{nmin} to \spad{nmax}. The value
++ returned is a record containing the value of the integral, the
++ estimate of the error in the computation, the total number of
++ function evaluations, and either a boolean value which is true
++ if the integral was computed within the user specified error criterion.
++ See \spadtype{NumericalQuadrature} for details.
rombergo : (F -> F,F,F,F,F,I,I) -> TrapAns
++ rombergo(fn,a,b,epsrel,epsabs,nmin,nmax) uses the romberg
++ method to numerically integrate function \spad{fn} over
++ the open interval from \spad{a} to \spad{b}, with
++ relative accuracy \spad{epsrel} and absolute accuracy \spad{epsabs},
++ with the refinement levels for convergence checking vary from
++ \spad{nmin} to \spad{nmax}. The value returned
++ is a record containing the value of the integral, the estimate of
++ the error in the computation, the total number of function
++ evaluations, and either a boolean value which is true if
++ the integral was computed within the user specified error criterion.
++ See \spadtype{NumericalQuadrature} for details.
simpsono : (F -> F,F,F,F,F,I,I) -> TrapAns
++ simpsono(fn,a,b,epsrel,epsabs,nmin,nmax) uses the
++ simpson method to numerically integrate function \spad{fn} over
++ the open interval from \spad{a} to \spad{b}, with
++ relative accuracy \spad{epsrel} and absolute accuracy \spad{epsabs},
++ with the refinement levels for convergence checking vary from
++ \spad{nmin} to \spad{nmax}. The value returned
++ is a record containing the value of the integral, the estimate of
++ the error in the computation, the total number of function
++ evaluations, and either a boolean value which is true if
++ the integral was computed within the user specified error criterion.
++ See \spadtype{NumericalQuadrature} for details.
trapezoidalo : (F -> F,F,F,F,F,I,I) -> TrapAns
++ trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax) uses the
++ trapezoidal method to numerically integrate function \spad{fn}
++ over the open interval from \spad{a} to \spad{b}, with
++ relative accuracy \spad{epsrel} and absolute accuracy \spad{epsabs},
++ with the refinement levels for convergence checking vary from
++ \spad{nmin} to \spad{nmax}. The value returned
++ is a record containing the value of the integral, the estimate of
++ the error in the computation, the total number of function
++ evaluations, and either a boolean value which is true if
++ the integral was computed within the user specified error criterion.
++ See \spadtype{NumericalQuadrature} for details.
Implementation ==> add
trapclosed : (F -> F,F,F,F,I) -> F
trapopen : (F -> F,F,F,F,I) -> F
import OutputPackage
---------------------------------------------------
aromberg(func,a,b,epsrel,epsabs,nmin,nmax,nint) ==
ans : TrapAns
sum : F := 0.0
err : F := 0.0
pts : I := 1
done : B := true
hh : F := (b-a) / nint
x1 : F := a
x2 : F := a + hh
io : L OFORM := [x1::E,x2::E]
i : I
for i in 1..nint repeat
ans := romberg(func,x1,x2,epsrel,epsabs,nmin,nmax)
if (not ans.success) then
io.1 := x1::E
io.2 := x2::E
print blankSeparate cons("accuracy not reached in interval"::E,io)
sum := sum + ans.value
err := err + abs(ans.error)
pts := pts + ans.totalpts-1
done := (done and ans.success)
x1 := x2
x2 := x2 + hh
return( [sum , err , pts , done] )
---------------------------------------------------
asimpson(func,a,b,epsrel,epsabs,nmin,nmax,nint) ==
ans : TrapAns
sum : F := 0.0
err : F := 0.0
pts : I := 1
done : B := true
hh : F := (b-a) / nint
x1 : F := a
x2 : F := a + hh
io : L OFORM := [x1::E,x2::E]
i : I
for i in 1..nint repeat
ans := simpson(func,x1,x2,epsrel,epsabs,nmin,nmax)
if (not ans.success) then
io.1 := x1::E
io.2 := x2::E
print blankSeparate cons("accuracy not reached in interval"::E,io)
sum := sum + ans.value
err := err + abs(ans.error)
pts := pts + ans.totalpts-1
done := (done and ans.success)
x1 := x2
x2 := x2 + hh
return( [sum , err , pts , done] )
---------------------------------------------------
atrapezoidal(func,a,b,epsrel,epsabs,nmin,nmax,nint) ==
ans : TrapAns
sum : F := 0.0
err : F := 0.0
pts : I := 1
i : I
done : B := true
hh : F := (b-a) / nint
x1 : F := a
x2 : F := a + hh
io : L OFORM := [x1::E,x2::E]
for i in 1..nint repeat
ans := trapezoidal(func,x1,x2,epsrel,epsabs,nmin,nmax)
if (not ans.success) then
io.1 := x1::E
io.2 := x2::E
print blankSeparate cons("accuracy not reached in interval"::E,io)
sum := sum + ans.value
err := err + abs(ans.error)
pts := pts + ans.totalpts-1
done := (done and ans.success)
x1 := x2
x2 := x2 + hh
return( [sum , err , pts , done] )
---------------------------------------------------
romberg(func,a,b,epsrel,epsabs,nmin,nmax) ==
length : F := (b-a)
delta : F := length
newsum : F := 0.5 * length * (func(a)+func(b))
newest : F := 0.0
oldsum : F := 0.0
oldest : F := 0.0
change : F := 0.0
qx1 : F := newsum
table : V F := new((nmax+1)::PI,0.0)
n : I := 1
pts : I := 1
four : I
j : I
i : I
if (nmin < 2) then
output("romberg: nmin to small (nmin > 1) nmin = ",nmin::E)
return([0.0,0.0,0,false])
if (nmax < nmin) then
output("romberg: nmax < nmin : nmax = ",nmax::E)
output(" nmin = ",nmin::E)
return([0.0,0.0,0,false])
if (a = b) then
output("romberg: integration limits are equal = ",a::E)
return([0.0,0.0,1,true])
if (epsrel < 0.0) then
output("romberg: eps_r < 0.0 eps_r = ",epsrel::E)
return([0.0,0.0,0,false])
if (epsabs < 0.0) then
output("romberg: eps_a < 0.0 eps_a = ",epsabs::E)
return([0.0,0.0,0,false])
for n in 1..nmax repeat
oldsum := newsum
newsum := trapclosed(func,a,delta,oldsum,pts)
newest := (4.0 * newsum - oldsum) / 3.0
four := 4
table(n) := newest
for j in 2..n repeat
i := n+1-j
four := four * 4
table(i) := table(i+1) + (table(i+1)-table(i)) / (four-1)
if n > nmin then
change := abs(table(1) - qx1)
if change < abs(epsrel*qx1) then
return( [table(1) , change , 2*pts+1 , true] )
if change < epsabs then
return( [table(1) , change , 2*pts+1 , true] )
oldsum := newsum
oldest := newest
delta := 0.5*delta
pts := 2*pts
qx1 := table(1)
return( [table(1) , 1.25*change , pts+1 ,false] )
---------------------------------------------------
simpson(func,a,b,epsrel,epsabs,nmin,nmax) ==
length : F := (b-a)
delta : F := length
newsum : F := 0.5*(b-a)*(func(a)+func(b))
newest : F := 0.0
oldsum : F := 0.0
oldest : F := 0.0
change : F := 0.0
n : I := 1
pts : I := 1
if (nmin < 2) then
output("simpson: nmin to small (nmin > 1) nmin = ",nmin::E)
return([0.0,0.0,0,false])
if (nmax < nmin) then
output("simpson: nmax < nmin : nmax = ",nmax::E)
output(" nmin = ",nmin::E)
return([0.0,0.0,0,false])
if (a = b) then
output("simpson: integration limits are equal = ",a::E)
return([0.0,0.0,1,true])
if (epsrel < 0.0) then
output("simpson: eps_r < 0.0 : eps_r = ",epsrel::E)
return([0.0,0.0,0,false])
if (epsabs < 0.0) then
output("simpson: eps_a < 0.0 : eps_a = ",epsabs::E)
return([0.0,0.0,0,false])
for n in 1..nmax repeat
oldsum := newsum
newsum := trapclosed(func,a,delta,oldsum,pts)
newest := (4.0 * newsum - oldsum) / 3.0
if n > nmin then
change := abs(newest-oldest)
if change < abs(epsrel*oldest) then
return( [newest , 1.25*change , 2*pts+1 , true] )
if change < epsabs then
return( [newest , 1.25*change , 2*pts+1 , true] )
oldsum := newsum
oldest := newest
delta := 0.5*delta
pts := 2*pts
return( [newest , 1.25*change , pts+1 ,false] )
---------------------------------------------------
trapezoidal(func,a,b,epsrel,epsabs,nmin,nmax) ==
length : F := (b-a)
delta : F := length
newsum : F := 0.5*(b-a)*(func(a)+func(b))
change : F := 0.0
oldsum : F
n : I := 1
pts : I := 1
if (nmin < 2) then
output("trapezoidal: nmin to small (nmin > 1) nmin = ",nmin::E)
return([0.0,0.0,0,false])
if (nmax < nmin) then
output("trapezoidal: nmax < nmin : nmax = ",nmax::E)
output(" nmin = ",nmin::E)
return([0.0,0.0,0,false])
if (a = b) then
output("trapezoidal: integration limits are equal = ",a::E)
return([0.0,0.0,1,true])
if (epsrel < 0.0) then
output("trapezoidal: eps_r < 0.0 : eps_r = ",epsrel::E)
return([0.0,0.0,0,false])
if (epsabs < 0.0) then
output("trapezoidal: eps_a < 0.0 : eps_a = ",epsabs::E)
return([0.0,0.0,0,false])
for n in 1..nmax repeat
oldsum := newsum
newsum := trapclosed(func,a,delta,oldsum,pts)
if n > nmin then
change := abs(newsum-oldsum)
if change < abs(epsrel*oldsum) then
return( [newsum , 1.25*change , 2*pts+1 , true] )
if change < epsabs then
return( [newsum , 1.25*change , 2*pts+1 , true] )
delta := 0.5*delta
pts := 2*pts
return( [newsum , 1.25*change , pts+1 ,false] )
---------------------------------------------------
rombergo(func,a,b,epsrel,epsabs,nmin,nmax) ==
length : F := (b-a)
delta : F := length / 3.0
newsum : F := length * func( 0.5*(a+b) )
newest : F := 0.0
oldsum : F := 0.0
oldest : F := 0.0
change : F := 0.0
qx1 : F := newsum
table : V F := new((nmax+1)::PI,0.0)
four : I
j : I
i : I
n : I := 1
pts : I := 1
for n in 1..nmax repeat
oldsum := newsum
newsum := trapopen(func,a,delta,oldsum,pts)
newest := (9.0 * newsum - oldsum) / 8.0
table(n) := newest
nine := 9
output(newest::E)
for j in 2..n repeat
i := n+1-j
nine := nine * 9
table(i) := table(i+1) + (table(i+1)-table(i)) / (nine-1)
if n > nmin then
change := abs(table(1) - qx1)
if change < abs(epsrel*qx1) then
return( [table(1) , 1.5*change , 3*pts , true] )
if change < epsabs then
return( [table(1) , 1.5*change , 3*pts , true] )
output(table::E)
oldsum := newsum
oldest := newest
delta := delta / 3.0
pts := 3*pts
qx1 := table(1)
return( [table(1) , 1.5*change , pts ,false] )
---------------------------------------------------
simpsono(func,a,b,epsrel,epsabs,nmin,nmax) ==
length : F := (b-a)
delta : F := length / 3.0
newsum : F := length * func( 0.5*(a+b) )
newest : F := 0.0
oldsum : F := 0.0
oldest : F := 0.0
change : F := 0.0
n : I := 1
pts : I := 1
for n in 1..nmax repeat
oldsum := newsum
newsum := trapopen(func,a,delta,oldsum,pts)
newest := (9.0 * newsum - oldsum) / 8.0
output(newest::E)
if n > nmin then
change := abs(newest - oldest)
if change < abs(epsrel*oldest) then
return( [newest , 1.5*change , 3*pts , true] )
if change < epsabs then
return( [newest , 1.5*change , 3*pts , true] )
oldsum := newsum
oldest := newest
delta := delta / 3.0
pts := 3*pts
return( [newest , 1.5*change , pts ,false] )
---------------------------------------------------
trapezoidalo(func,a,b,epsrel,epsabs,nmin,nmax) ==
length : F := (b-a)
delta : F := length/3.0
newsum : F := length*func( 0.5*(a+b) )
change : F := 0.0
pts : I := 1
oldsum : F
n : I
for n in 1..nmax repeat
oldsum := newsum
newsum := trapopen(func,a,delta,oldsum,pts)
output(newsum::E)
if n > nmin then
change := abs(newsum-oldsum)
if change < abs(epsrel*oldsum) then
return([newsum , 1.5*change , 3*pts , true] )
if change < epsabs then
return([newsum , 1.5*change , 3*pts , true] )
delta := delta / 3.0
pts := 3*pts
return([newsum , 1.5*change , pts ,false] )
---------------------------------------------------
trapclosed(func,start,h,oldsum,numpoints) ==
x : F := start + 0.5*h
sum : F := 0.0
i : I
for i in 1..numpoints repeat
sum := sum + func(x)
x := x + h
return( 0.5*(oldsum + sum*h) )
---------------------------------------------------
trapopen(func,start,del,oldsum,numpoints) ==
ddel : F := 2.0*del
x : F := start + 0.5*del
sum : F := 0.0
i : I
for i in 1..numpoints repeat
sum := sum + func(x)
x := x + ddel
sum := sum + func(x)
x := x + del
return( (oldsum/3.0 + sum*del) )
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package NUMQUAD NumericalQuadrature>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|