aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/numeigen.spad.pamphlet
blob: a2e692f3abcc39705efb40893f7a07f99ffd4678 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra numeigen.spad}
\author{Patrizia Gianni}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package INEP InnerNumericEigenPackage}
<<package INEP InnerNumericEigenPackage>>=
)abbrev package INEP InnerNumericEigenPackage
++ Author:P. Gianni
++ Date Created: Summer 1990
++ Date Last Updated:Spring 1991
++ Basic Functions:
++ Related Constructors: ModularField
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package is the inner package to be used by NumericRealEigenPackage
++ and NumericComplexEigenPackage for the computation of numeric
++ eigenvalues and eigenvectors.
InnerNumericEigenPackage(K,F,Par) : C == T
 where
   F    :   Field  -- this is the field where the answer will be
                   -- for dealing with the complex case
   K    :   Field  -- type of the  input
   Par  :   Join(Field,OrderedRing)  -- it will be NF or RN

   SE    ==> Symbol()
   RN    ==> Fraction Integer
   I     ==> Integer
   NF    ==> Float
   CF    ==> Complex Float
   GRN   ==> Complex RN
   GI    ==> Complex Integer
   PI    ==> PositiveInteger
   NNI   ==> NonNegativeInteger
   MRN   ==> Matrix RN

   MK          ==> Matrix K
   PK          ==> Polynomial K
   MF          ==> Matrix F
   SUK         ==> SparseUnivariatePolynomial K
   SUF         ==> SparseUnivariatePolynomial F
   SUP         ==> SparseUnivariatePolynomial
   MSUK        ==> Matrix SUK

   PEigenForm  ==> Record(algpol:SUK,almult:Integer,poleigen:List(MSUK))

   outForm     ==> Record(outval:F,outmult:Integer,outvect:List MF)

   IntForm     ==> Union(outForm,PEigenForm)
   UFactor     ==> (SUK -> Factored SUK)
   C == with

     charpol  :  MK   ->  SUK
       ++ charpol(m) computes the characteristic polynomial of a matrix
       ++ m with entries in K.
       ++ This function returns a polynomial
       ++ over K, while the general one (that is in EiegenPackage) returns
       ++ Fraction P K

     solve1   : (SUK, Par) -> List F
       ++ solve1(pol, eps) finds the roots of the univariate polynomial
       ++ polynomial pol to precision eps. If K is \spad{Fraction Integer}
       ++ then only the real roots are returned, if K is
       ++ \spad{Complex Fraction Integer} then all roots are found.

     innerEigenvectors    : (MK,Par,UFactor)   ->  List(outForm)
       ++ innerEigenvectors(m,eps,factor) computes explicitly
       ++ the eigenvalues and the correspondent eigenvectors
       ++ of the matrix m. The parameter eps determines the type of
       ++ the output, factor is the univariate factorizer to br used
       ++ to reduce the characteristic polynomial into irreducible factors.

   T == add

     numeric(r:K):F ==
       K is RN =>
         F is NF => convert(r)$RN
         F is RN    => r
         F is CF    => r :: RN :: CF
         F is GRN   => r::RN::GRN
       K is GRN =>
         F is GRN => r
         F is CF  => convert(convert r)
       error "unsupported coefficient type"

    ---- next functions neeeded for defining  ModularField ----

     monicize(f:SUK) : SUK ==
       (a:=leadingCoefficient f) =1 => f
       inv(a)*f

     reduction(u:SUK,p:SUK):SUK == u rem p

     merge(p:SUK,q:SUK):Union(SUK,"failed") ==
         p = q => p
         p = 0 => q
         q = 0 => p
         "failed"

     exactquo(u:SUK,v:SUK,p:SUK):Union(SUK,"failed") ==
        val:=extendedEuclidean(v,p,u)
        val case "failed" => "failed"
        val.coef1

         ----  eval a vector of F in a radical expression  ----
     evalvect(vect:MSUK,alg:F) : MF ==
       n:=nrows vect
       w:MF:=zero(n,1)$MF
       for i in 1..n repeat
         polf:=map(numeric,
           vect(i,1))$UnivariatePolynomialCategoryFunctions2(K,SUK,F,SUF)
         v:F:=elt(polf,alg)
         setelt(w,i,1,v)
       w

       ---- internal function for the computation of eigenvectors  ----
     inteigen(A:MK,p:SUK,fact:UFactor) : List(IntForm) ==
       dimA:NNI:=  nrows A
       MM:=ModularField(SUK,SUK,reduction,merge,exactquo)
       AM:=Matrix(MM)
       lff:=factors fact(p)
       res: List IntForm  :=[]
       lr : List MF:=[]
       for ff in lff repeat
         pol:SUK:= ff.factor
         if (degree pol)=1 then
           alpha:K:=-coefficient(pol,0)/leadingCoefficient pol
           -- compute the eigenvectors, rational case
           B1:MK := zero(dimA,dimA)$MK
           for i in 1..dimA repeat
             for j in 1..dimA repeat B1(i,j):=A(i,j)
             B1(i,i):= B1(i,i) - alpha
           lr:=[]
           for vecr in nullSpace B1 repeat
             wf:MF:=zero(dimA,1)
             for i in 1..dimA repeat wf(i,1):=numeric vecr.i
             lr:=cons(wf,lr)
           res:=cons([numeric alpha,ff.exponent,lr]$outForm,res)
         else
           ppol:=monicize pol
           alg:MM:= reduce(monomial(1,1),ppol)
           B:AM:= zero(dimA,dimA)$AM
           for i in 1..dimA  repeat
             for j in 1..dimA repeat B(i,j):=reduce(A(i,j) ::SUK,ppol)
             B(i,i):=B(i,i) - alg
           sln2:=nullSpace B
           soln:List MSUK :=[]
           for vec in sln2 repeat
             wk:MSUK:=zero(dimA,1)
             for i in 1..dimA repeat wk(i,1):=(vec.i)::SUK
             soln:=cons(wk,soln)
           res:=cons([ff.factor,ff.exponent,soln]$PEigenForm,
                            res)
       res

     if K is RN then
         solve1(up:SUK, eps:Par) : List(F) ==
           denom := "lcm"/[denom(c::RN) for c in coefficients up]
           up:=denom*up
           upi := map(numer,up)$UnivariatePolynomialCategoryFunctions2(RN,SUP RN,I,SUP I)
           innerSolve1(upi, eps)$InnerNumericFloatSolvePackage(I,F,Par)
     else if K is GRN then
         solve1(up:SUK, eps:Par) : List(F) ==
           denom := "lcm"/[lcm(denom real(c::GRN), denom imag(c::GRN))
                                for c in coefficients up]
           up:=denom*up
           upgi := map(complex(numer(real #1), numer(imag #1)),
                      up)$UnivariatePolynomialCategoryFunctions2(GRN,SUP GRN,GI,SUP GI)
           innerSolve1(upgi, eps)$InnerNumericFloatSolvePackage(GI,F,Par)
     else error "unsupported matrix type"

          ----  the real eigenvectors expressed as floats  ----

     innerEigenvectors(A:MK,eps:Par,fact:UFactor) : List outForm ==
       pol:= charpol A
       sln1:List(IntForm):=inteigen(A,pol,fact)
       n:=nrows A
       sln:List(outForm):=[]
       for lev in sln1 repeat
         lev case outForm => sln:=cons(lev,sln)
         leva:=lev::PEigenForm
         lval:List(F):= solve1(leva.algpol,eps)
         lvect:=leva.poleigen
         lmult:=leva.almult
         for alg in lval repeat
           nsl:=[alg,lmult,[evalvect(ep,alg) for ep in lvect]]$outForm
           sln:=cons(nsl,sln)
       sln

     charpol(A:MK) : SUK ==
       dimA :PI := (nrows A):PI
       dimA ~= ncols A => error " The matrix is not square"
       B:Matrix SUK :=zero(dimA,dimA)
       for i in 1..dimA repeat
         for j in 1..dimA repeat  B(i,j):=A(i,j)::SUK
         B(i,i) := B(i,i) - monomial(1,1)$SUK
       determinant B


@
\section{package NREP NumericRealEigenPackage}
<<package NREP NumericRealEigenPackage>>=
)abbrev package NREP NumericRealEigenPackage
++ Author:P. Gianni
++ Date Created:Summer 1990
++ Date Last Updated:Spring 1991
++ Basic Functions:
++ Related Constructors: FloatingRealPackage
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package computes explicitly eigenvalues and eigenvectors of
++ matrices with entries over the Rational Numbers.
++ The results are expressed as floating numbers or as rational numbers
++ depending on the type of the parameter Par.
NumericRealEigenPackage(Par) : C == T
 where
   Par   :   Join(Field,OrderedRing) -- Float or RationalNumber

   SE    ==> Symbol()
   RN    ==> Fraction Integer
   I     ==> Integer
   NF    ==> Float
   CF    ==> Complex Float
   GRN   ==> Complex RN
   GI    ==> Complex Integer
   PI    ==> PositiveInteger
   NNI   ==> NonNegativeInteger
   MRN   ==> Matrix RN

   MPar        ==> Matrix Par
   outForm     ==> Record(outval:Par,outmult:Integer,outvect:List MPar)

   C == with
     characteristicPolynomial :   MRN    -> Polynomial RN
       ++ characteristicPolynomial(m) returns the characteristic polynomial
       ++ of the matrix m expressed as polynomial
       ++ over RN with a new symbol as variable.
       -- while the function in EigenPackage returns Fraction P RN.
     characteristicPolynomial : (MRN,SE) -> Polynomial RN
       ++ characteristicPolynomial(m,x) returns the characteristic polynomial
       ++ of the matrix m expressed as polynomial
       ++ over RN with variable x.
       -- while the function in EigenPackage returns
       ++ Fraction P RN.
     realEigenvalues  :   (MRN,Par)   ->  List Par
       ++ realEigenvalues(m,eps) computes the eigenvalues of the matrix
       ++ m to precision eps. The eigenvalues are expressed as floats or
       ++ rational numbers depending on the type of eps (float or rational).
     realEigenvectors    : (MRN,Par)   ->  List(outForm)
       ++ realEigenvectors(m,eps)  returns a list of
       ++ records each one containing
       ++ a real eigenvalue, its algebraic multiplicity, and a list of
       ++ associated eigenvectors. All these results
       ++ are computed to precision eps as floats or rational
       ++ numbers depending on the type of eps .


   T == add

     import InnerNumericEigenPackage(RN, Par, Par)

     characteristicPolynomial(m:MRN) : Polynomial RN ==
       x:SE:=new()$SE
       multivariate(charpol(m),x)

            ----  characteristic polynomial of a matrix A ----
     characteristicPolynomial(A:MRN,x:SE):Polynomial RN ==
       multivariate(charpol(A),x)

     realEigenvalues(m:MRN,eps:Par) : List Par  ==
       solve1(charpol m, eps)

     realEigenvectors(m:MRN,eps:Par) :List outForm ==
       innerEigenvectors(m,eps,factor$GenUFactorize(RN))

@
\section{package NCEP NumericComplexEigenPackage}
<<package NCEP NumericComplexEigenPackage>>=
)abbrev package NCEP NumericComplexEigenPackage
++ Author: P. Gianni
++ Date Created: Summer 1990
++ Date Last Updated: Spring 1991
++ Basic Functions:
++ Related Constructors: FloatingComplexPackage
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package computes explicitly eigenvalues and eigenvectors of
++ matrices with entries over the complex rational numbers.
++ The results are expressed either as complex floating numbers or as
++ complex rational numbers
++ depending on the type of the precision parameter.
NumericComplexEigenPackage(Par) : C == T
 where
   Par   :   Join(Field,OrderedRing)   -- Float or RationalNumber

   SE    ==> Symbol()
   RN    ==> Fraction Integer
   I     ==> Integer
   NF    ==> Float
   CF    ==> Complex Float
   GRN   ==> Complex RN
   GI    ==> Complex Integer
   PI    ==> PositiveInteger
   NNI   ==> NonNegativeInteger
   MRN   ==> Matrix RN

   MCF         ==> Matrix CF
   MGRN        ==> Matrix GRN
   MCPar       ==> Matrix Complex Par
   SUPGRN      ==> SparseUnivariatePolynomial GRN
   outForm     ==> Record(outval:Complex Par,outmult:Integer,outvect:List MCPar)

   C == with
     characteristicPolynomial :   MGRN    -> Polynomial GRN
       ++ characteristicPolynomial(m) returns the characteristic polynomial
       ++ of the matrix m expressed as polynomial
       ++ over complex rationals with a new symbol as variable.
       -- while the function in EigenPackage returns Fraction P GRN.
     characteristicPolynomial : (MGRN,SE) -> Polynomial GRN
       ++ characteristicPolynomial(m,x) returns the characteristic polynomial
       ++ of the matrix m expressed as polynomial
       ++ over Complex Rationals with variable x.
       -- while the function in EigenPackage returns Fraction P GRN.
     complexEigenvalues  :   (MGRN,Par)   ->  List Complex Par
       ++ complexEigenvalues(m,eps) computes the eigenvalues of the matrix
       ++ m to precision eps. The eigenvalues are expressed as complex floats or
       ++ complex rational numbers depending on the type of eps (float or rational).
     complexEigenvectors    : (MGRN,Par)   ->  List(outForm)
       ++ complexEigenvectors(m,eps)  returns a list of
       ++ records each one containing
       ++ a complex eigenvalue, its algebraic multiplicity, and a list of
       ++ associated eigenvectors. All these results
       ++ are computed to precision eps and are expressed as complex floats
       ++ or complex rational numbers depending on the type of eps (float or rational).
   T == add

     import InnerNumericEigenPackage(GRN,Complex Par,Par)

     characteristicPolynomial(m:MGRN) : Polynomial GRN  ==
       x:SE:=new()$SE
       multivariate(charpol m, x)

            ----  characteristic polynomial of a matrix A ----
     characteristicPolynomial(A:MGRN,x:SE):Polynomial GRN ==
       multivariate(charpol A, x)

     complexEigenvalues(m:MGRN,eps:Par) : List Complex Par  ==
       solve1(charpol m, eps)

     complexEigenvectors(m:MGRN,eps:Par) :List outForm ==
       innerEigenvectors(m,eps,factor$ComplexFactorization(RN,SUPGRN))

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package INEP InnerNumericEigenPackage>>
<<package NREP NumericRealEigenPackage>>
<<package NCEP NumericComplexEigenPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}