1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra nlinsol.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package RETSOL RetractSolvePackage}
<<package RETSOL RetractSolvePackage>>=
)abbrev package RETSOL RetractSolvePackage
++ Author: Manuel Bronstein
++ Date Created: 31 October 1991
++ Date Last Updated: 31 October 1991
++ Description:
++ RetractSolvePackage is an interface to \spadtype{SystemSolvePackage}
++ that attempts to retract the coefficients of the equations before
++ solving.
RetractSolvePackage(Q, R): Exports == Implementation where
Q: IntegralDomain
R: Join(IntegralDomain, RetractableTo Q)
PQ ==> Polynomial Q
FQ ==> Fraction PQ
SY ==> Symbol
P ==> Polynomial R
F ==> Fraction P
EQ ==> Equation
SSP ==> SystemSolvePackage
Exports ==> with
solveRetract: (List P, List SY) -> List List EQ F
++ solveRetract(lp,lv) finds the solutions of the list lp of
++ rational functions with respect to the list of symbols lv.
++ The function tries to retract all the coefficients of the equations
++ to Q before solving if possible.
Implementation ==> add
LEQQ2F : List EQ FQ -> List EQ F
FQ2F : FQ -> F
PQ2P : PQ -> P
QIfCan : List P -> Union(List FQ, "failed")
PQIfCan: P -> Union(FQ, "failed")
PQ2P p == map(#1::R, p)$PolynomialFunctions2(Q, R)
FQ2F f == PQ2P numer f / PQ2P denom f
LEQQ2F l == [equation(FQ2F lhs eq, FQ2F rhs eq) for eq in l]
solveRetract(lp, lv) ==
(u := QIfCan lp) case "failed" =>
solve([p::F for p in lp]$List(F), lv)$SSP(R)
[LEQQ2F l for l in solve(u::List(FQ), lv)$SSP(Q)]
QIfCan l ==
ans:List(FQ) := empty()
for p in l repeat
(u := PQIfCan p) case "failed" => return "failed"
ans := concat(u::FQ, ans)
ans
PQIfCan p ==
(u := mainVariable p) case "failed" =>
(r := retractIfCan(ground p)@Union(Q,"failed")) case Q => r::Q::PQ::FQ
"failed"
up := univariate(p, s := u::SY)
ans:FQ := 0
while up ~= 0 repeat
(v := PQIfCan leadingCoefficient up) case "failed" => return "failed"
ans := ans + monomial(1, s, degree up)$PQ * (v::FQ)
up := reductum up
ans
@
\section{package NLINSOL NonLinearSolvePackage}
<<package NLINSOL NonLinearSolvePackage>>=
)abbrev package NLINSOL NonLinearSolvePackage
++ Author: Manuel Bronstein
++ Date Created: 31 October 1991
++ Date Last Updated: 26 June 1992
++ Description:
++ NonLinearSolvePackage is an interface to \spadtype{SystemSolvePackage}
++ that attempts to retract the coefficients of the equations before
++ solving. The solutions are given in the algebraic closure of R whenever
++ possible.
NonLinearSolvePackage(R:IntegralDomain): Exports == Implementation where
Z ==> Integer
Q ==> Fraction Z
SY ==> Symbol
P ==> Polynomial R
F ==> Fraction P
EQ ==> Equation F
SSP ==> SystemSolvePackage
SOL ==> RetractSolvePackage
Exports ==> with
solveInField: (List P, List SY) -> List List EQ
++ solveInField(lp,lv) finds the solutions of the list lp of
++ rational functions with respect to the list of symbols lv.
solveInField: List P -> List List EQ
++ solveInField(lp) finds the solution of the list lp of rational
++ functions with respect to all the symbols appearing in lp.
solve: (List P, List SY) -> List List EQ
++ solve(lp,lv) finds the solutions in the algebraic closure of R
++ of the list lp of
++ rational functions with respect to the list of symbols lv.
solve: List P -> List List EQ
++ solve(lp) finds the solution in the algebraic closure of R
++ of the list lp of rational
++ functions with respect to all the symbols appearing in lp.
Implementation ==> add
solveInField l == solveInField(l, "setUnion"/[variables p for p in l])
if R has AlgebraicallyClosedField then
import RationalFunction(R)
expandSol: List EQ -> List List EQ
RIfCan : F -> Union(R, "failed")
addRoot : (EQ, List List EQ) -> List List EQ
allRoots : List P -> List List EQ
evalSol : (List EQ, List EQ) -> List EQ
solve l == solve(l, "setUnion"/[variables p for p in l])
solve(lp, lv) == concat([expandSol sol for sol in solveInField(lp, lv)])
addRoot(eq, l) == [concat(eq, sol) for sol in l]
evalSol(ls, l) == [equation(lhs eq, eval(rhs eq, l)) for eq in ls]
-- converts [p1(a1),...,pn(an)] to
-- [[a1=v1,...,an=vn]] where vi ranges over all the zeros of pi
allRoots l ==
empty? l => [empty()$List(EQ)]
z := allRoots rest l
s := mainVariable(p := first l)::SY::P::F
concat [addRoot(equation(s, a::P::F), z) for a in zerosOf univariate p]
expandSol l ==
lassign := lsubs := empty()$List(EQ)
luniv := empty()$List(P)
for eq in l repeat
if retractIfCan(lhs eq)@Union(SY, "failed") case SY then
if RIfCan(rhs eq) case R then lassign := concat(eq, lassign)
else lsubs := concat(eq, lsubs)
else
if ((u := retractIfCan(lhs eq)@Union(P, "failed")) case P) and
one?(# variables(u::P)) and ((r := RIfCan rhs eq) case R) then
luniv := concat(u::P - r::R::P, luniv)
else return [l]
empty? luniv => [l]
[concat(z, concat(evalSol(lsubs,z), lassign)) for z in allRoots luniv]
RIfCan f ==
((n := retractIfCan(numer f)@Union(R,"failed")) case R) and
((d := retractIfCan(denom f)@Union(R,"failed")) case R) => n::R / d::R
"failed"
else
solve l == solveInField l
solve(lp, lv) == solveInField(lp, lv)
-- 'else if' is doubtful with this compiler so all 3 conditions are explicit
if (not(R is Q)) and (R has RetractableTo Q) then
solveInField(lp, lv) == solveRetract(lp, lv)$SOL(Q, R)
if (not(R is Z)) and (not(R has RetractableTo Q)) and
(R has RetractableTo Z) then
solveInField(lp, lv) == solveRetract(lp, lv)$SOL(Z, R)
if (not(R is Z)) and (not(R has RetractableTo Q)) and
(not(R has RetractableTo Z)) then
solveInField(lp, lv) == solve([p::F for p in lp]$List(F), lv)$SSP(R)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
-- Compile order for the differential equation solver:
-- oderf.spad odealg.spad nlode.spad nlinsol.spad riccati.spad odeef.spad
<<package RETSOL RetractSolvePackage>>
<<package NLINSOL NonLinearSolvePackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|