1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{src/algebra moebius.spad}
\author{Stephen M. Watt}
\maketitle
\begin{abstract}
\end{abstract}
\tableofcontents
\eject
\section{domain MOEBIUS MoebiusTransform}
<<domain MOEBIUS MoebiusTransform>>=
import OnePointCompletion
)abbrev domain MOEBIUS MoebiusTransform
++ 2-by-2 matrices acting on P1(F).
++ Author: Stephen "Say" Watt
++ Date Created: January 1987
++ Date Last Updated: 11 April 1990
++ Keywords:
++ Examples:
++ References:
MoebiusTransform(F): Exports == Implementation where
++ MoebiusTransform(F) is the domain of fractional linear (Moebius)
++ transformations over F.
F : Field
OUT ==> OutputForm
P1F ==> OnePointCompletion F -- projective 1-space over F
Exports ==> Group with
moebius: (F,F,F,F) -> %
++ moebius(a,b,c,d) returns \spad{matrix [[a,b],[c,d]]}.
shift: F -> %
++ shift(k) returns \spad{matrix [[1,k],[0,1]]} representing the map
++ \spad{x -> x + k}.
scale: F -> %
++ scale(k) returns \spad{matrix [[k,0],[0,1]]} representing the map
++ \spad{x -> k * x}.
recip: () -> %
++ recip() returns \spad{matrix [[0,1],[1,0]]} representing the map
++ \spad{x -> 1 / x}.
shift: (%,F) -> %
++ shift(m,h) returns \spad{shift(h) * m}
++ (see \spadfunFrom{shift}{MoebiusTransform}).
scale: (%,F) -> %
++ scale(m,h) returns \spad{scale(h) * m}
++ (see \spadfunFrom{shift}{MoebiusTransform}).
recip: % -> %
++ recip(m) = recip() * m
eval: (%,F) -> F
++ eval(m,x) returns \spad{(a*x + b)/(c*x + d)}
++ where \spad{m = moebius(a,b,c,d)}
++ (see \spadfunFrom{moebius}{MoebiusTransform}).
eval: (%,P1F) -> P1F
++ eval(m,x) returns \spad{(a*x + b)/(c*x + d)}
++ where \spad{m = moebius(a,b,c,d)}
++ (see \spadfunFrom{moebius}{MoebiusTransform}).
Implementation ==> add
Rep := Record(a': F,b': F,c': F,d': F)
moebius(aa,bb,cc,dd) == [aa,bb,cc,dd]
a(t:%):F == t.a'
b(t:%):F == t.b'
c(t:%):F == t.c'
d(t:%):F == t.d'
1 == moebius(1,0,0,1)
t * s ==
moebius(b(t)*c(s) + a(t)*a(s), b(t)*d(s) + a(t)*b(s), _
d(t)*c(s) + c(t)*a(s), d(t)*d(s) + c(t)*b(s))
inv t == moebius(d(t),-b(t),-c(t),a(t))
shift f == moebius(1,f,0,1)
scale f == moebius(f,0,0,1)
recip() == moebius(0,1,1,0)
shift(t,f) == moebius(a(t) + f*c(t), b(t) + f*d(t), c(t), d(t))
scale(t,f) == moebius(f*a(t),f*b(t),c(t),d(t))
recip(t: %): % == moebius(c(t),d(t),a(t),b(t))
eval(t:%,f:F) == (a(t)*f + b(t))/(c(t)*f + d(t))
eval(t:%,f:P1F) ==
(ff := retractIfCan(f)@Union(F,"failed")) case "failed" =>
(a(t)/c(t)) :: P1F
zero?(den := c(t) * (fff := ff :: F) + d(t)) => infinity()
((a(t) * fff + b(t))/den) :: P1F
coerce t ==
var := "%x" :: OUT
num := (a(t) :: OUT) * var + (b(t) :: OUT)
den := (c(t) :: OUT) * var + (d(t) :: OUT)
rarrow(var,num/den)
proportional?: (List F,List F) -> Boolean
proportional?(list1,list2) ==
empty? list1 => empty? list2
empty? list2 => false
zero? (x1 := first list1) =>
(zero? first list2) and proportional?(rest list1,rest list2)
zero? (x2 := first list2) => false
map(#1 / x1,list1) = map(#1 / x2,list2)
t = s ==
list1 : List F := [a(t),b(t),c(t),d(t)]
list2 : List F := [a(s),b(s),c(s),d(s)]
proportional?(list1,list2)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<domain MOEBIUS MoebiusTransform>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|