1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra lingrob.spad}
\author{The Axiom Team}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package LGROBP LinGroebnerPackage}
<<package LGROBP LinGroebnerPackage>>=
)abbrev package LGROBP LinGroebnerPackage
++ Given a Groebner basis B with respect to the total degree ordering for
++ a zero-dimensional ideal I, compute
++ a Groebner basis with respect to the lexicographical ordering by using
++ linear algebra.
LinGroebnerPackage(lv,F) : C == T
where
Z ==> Integer
lv : List Symbol
F : GcdDomain
DP ==> DirectProduct(#lv,NonNegativeInteger)
DPoly ==> DistributedMultivariatePolynomial(lv,F)
HDP ==> HomogeneousDirectProduct(#lv,NonNegativeInteger)
HDPoly ==> HomogeneousDistributedMultivariatePolynomial(lv,F)
OV ==> OrderedVariableList(lv)
NNI ==> NonNegativeInteger
LVals ==> Record(gblist : List DPoly,gvlist : List Z)
VF ==> Vector F
VV ==> Vector NNI
MF ==> Matrix F
cLVars ==> Record(glbase:List DPoly,glval:List Z)
C == with
linGenPos : List HDPoly -> LVals
++ linGenPos \undocumented
groebgen : List DPoly -> cLVars
++ groebgen \undocumented
totolex : List HDPoly -> List DPoly
++ totolex \undocumented
minPol : (List HDPoly,List HDPoly,OV) -> HDPoly
++ minPol \undocumented
minPol : (List HDPoly,OV) -> HDPoly
++ minPol \undocumented
computeBasis : List HDPoly -> List HDPoly
++ computeBasis \undocumented
coord : (HDPoly,List HDPoly) -> VF
++ coord \undocumented
anticoord : (List F,DPoly,List DPoly) -> DPoly
++ anticoord \undocumented
intcompBasis : (OV,List HDPoly,List HDPoly) -> List HDPoly
++ intcompBasis \undocumented
choosemon : (DPoly,List DPoly) -> DPoly
++ choosemon \undocumented
transform : DPoly -> HDPoly
++ transform \undocumented
T == add
import GroebnerPackage(F,DP,OV,DPoly)
import GroebnerPackage(F,HDP,OV,HDPoly)
import GroebnerInternalPackage(F,HDP,OV,HDPoly)
import GroebnerInternalPackage(F,DP,OV,DPoly)
lvar :=[variable(yx)::OV for yx in lv]
reduceRow(M:MF, v : VF, lastRow: Integer, pivots: Vector(Integer)) : VF ==
a1:F := 1
b:F := 0
dim := #v
for j in 1..lastRow repeat -- scan over rows
mj := row(M,j)
k:=pivots(j)
b:=mj.k
vk := v.k
for kk in 1..(k-1) repeat
v(kk) := ((-b*v(kk)) exquo a1) :: F
for kk in k..dim repeat
v(kk) := ((vk*mj(kk)-b*v(kk)) exquo a1)::F
a1 := b
v
rRedPol(f:HDPoly, B:List HDPoly):Record(poly:HDPoly, mult:F) ==
gm := redPo(f,B)
gm.poly = 0 => gm
gg := reductum(gm.poly)
ggm := rRedPol(gg,B)
[ggm.mult*(gm.poly - gg) + ggm.poly, ggm.mult*gm.mult]
----- transform the total basis B in lex basis -----
totolex(B : List HDPoly) : List DPoly ==
result:List DPoly :=[]
ltresult:List DPoly :=[]
vBasis:= computeBasis B
nBasis:List DPoly :=[1$DPoly]
ndim:=(#vBasis)::PositiveInteger
ndim1:NNI:=ndim+1
lm:VF
linmat:MF:=zero(ndim,2*ndim+1)
linmat(1,1):=1$F
linmat(1,ndim1):=1
pivots:Vector Integer := new(ndim,0)
pivots(1) := 1
firstmon:DPoly:=1$DPoly
ofirstmon:DPoly:=1$DPoly
orecfmon:Record(poly:HDPoly, mult:F) := [1,1]
i:NNI:=2
while (firstmon:=choosemon(firstmon,ltresult))~=1 repeat
if (v:=firstmon exquo ofirstmon) case "failed" then
recfmon:=rRedPol(transform firstmon,B)
else
recfmon:=rRedPol(transform(v::DPoly) *orecfmon.poly,B)
recfmon.mult := recfmon.mult * orecfmon.mult
cc := gcd(content recfmon.poly, recfmon.mult)
recfmon.poly := (recfmon.poly exquo cc)::HDPoly
recfmon.mult := (recfmon.mult exquo cc)::F
veccoef:VF:=coord(recfmon.poly,vBasis)
ofirstmon:=firstmon
orecfmon := recfmon
lm:=zero(2*ndim+1)
j : Integer
for j in 1..ndim repeat lm(j):=veccoef(j)
lm(ndim+i):=recfmon.mult
lm := reduceRow(linmat, lm, i-1, pivots)
if i=ndim1 then j:=ndim1
else
j:=1
while lm(j) = 0 and j< ndim1 repeat j:=j+1
if j=ndim1 then
cordlist:List F:=[lm(k) for k in ndim1..ndim1+(#nBasis)]
antc:=+/[c*b for c in reverse cordlist
for b in concat(firstmon,nBasis)]
antc:=primitivePart antc
result:=concat(antc,result)
ltresult:=concat(antc-reductum antc,ltresult)
else
pivots(i) := j
setRow!(linmat,i,lm)
i:=i+1
nBasis:=cons(firstmon,nBasis)
result
---- Compute the univariate polynomial for x
----oldBasis is a total degree Groebner basis
minPol(oldBasis:List HDPoly,x:OV) :HDPoly ==
algBasis:= computeBasis oldBasis
minPol(oldBasis,algBasis,x)
---- Compute the univariate polynomial for x
---- oldBasis is total Groebner, algBasis is the basis as algebra
minPol(oldBasis:List HDPoly,algBasis:List HDPoly,x:OV) :HDPoly ==
nvp:HDPoly:=x::HDPoly
f:=1$HDPoly
omult:F :=1
ndim:=(#algBasis)::PositiveInteger
ndim1:NNI:=ndim+1
lm:VF
linmat:MF:=zero(ndim,2*ndim+1)
linmat(1,1):=1$F
linmat(1,ndim1):=1
pivots:Vector Integer := new(ndim,0)
pivots(1) := 1
for i in 2..ndim1 repeat
recf:=rRedPol(f*nvp,oldBasis)
omult := recf.mult * omult
f := recf.poly
cc := gcd(content f, omult)
f := (f exquo cc)::HDPoly
omult := (omult exquo cc)::F
veccoef:VF:=coord(f,algBasis)
lm:=zero(2*ndim+1)
j : Integer
for j in 1..ndim repeat lm(j) := veccoef(j)
lm(ndim+i):=omult
lm := reduceRow(linmat, lm, i-1, pivots)
j:=1
while lm(j)=0 and j<ndim1 repeat j:=j+1
if j=ndim1 then return
g:HDPoly:=0
for k in ndim1..2*ndim+1 repeat
g:=g+lm(k) * nvp**((k-ndim1):NNI)
primitivePart g
pivots(i) := j
setRow!(linmat,i,lm)
----- transform a DPoly in a HDPoly -----
transform(dpol:DPoly) : HDPoly ==
dpol=0 => 0$HDPoly
monomial(leadingCoefficient dpol,
directProduct(degree(dpol)::VV)$HDP)$HDPoly +
transform(reductum dpol)
----- compute the basis for the vector space determined by B -----
computeBasis(B:List HDPoly) : List HDPoly ==
mB:List HDPoly:=[monomial(1$F,degree f)$HDPoly for f in B]
result:List HDPoly := [1$HDPoly]
for var in lvar repeat
part:=intcompBasis(var,result,mB)
result:=concat(result,part)
result
----- internal function for computeBasis -----
intcompBasis(x:OV,lr:List HDPoly,mB : List HDPoly):List HDPoly ==
lr=[] => lr
part:List HDPoly :=[]
for f in lr repeat
g:=x::HDPoly * f
if redPo(g,mB).poly~=0 then part:=concat(g,part)
concat(part,intcompBasis(x,part,mB))
----- coordinate of f with respect to the basis B -----
----- f is a reduced polynomial -----
coord(f:HDPoly,B:List HDPoly) : VF ==
ndim := #B
vv:VF:=new(ndim,0$F)$VF
while f~=0 repeat
rf := reductum f
lf := f-rf
lcf := leadingCoefficient f
i:Z:=position(monomial(1$F,degree lf),B)
vv.i:=lcf
f := rf
vv
----- reconstruct the polynomial from its coordinate -----
anticoord(vv:List F,mf:DPoly,B:List DPoly) : DPoly ==
for f in B for c in vv repeat (mf:=mf-c*f)
mf
----- choose the next monom -----
choosemon(mf:DPoly,nB:List DPoly) : DPoly ==
nB = [] => ((lvar.last)::DPoly)*mf
for x in reverse lvar repeat
xx:=x ::DPoly
mf:=xx*mf
if redPo(mf,nB).poly ~= 0 then return mf
dx := degree(mf,x)
mf := (mf exquo (xx ** dx))::DPoly
mf
----- put B in general position, B is Groebner -----
linGenPos(B : List HDPoly) : LVals ==
result:List DPoly :=[]
ltresult:List DPoly :=[]
vBasis:= computeBasis B
nBasis:List DPoly :=[1$DPoly]
ndim:=#vBasis : PositiveInteger
ndim1:NNI:=ndim+1
lm:VF
linmat:MF:=zero(ndim,2*ndim+1)
linmat(1,1):=1$F
linmat(1,ndim1):=1
pivots:Vector Integer := new(ndim,0)
pivots(1) := 1
i:NNI:=2
rval:List Z :=[]
for ii in 1..(#lvar-1) repeat
c:Z:=0
while c=0 repeat c:=random()$Z rem 11
rval:=concat(c,rval)
nval:DPoly := (last.lvar)::DPoly -
(+/[r*(vv)::DPoly for r in rval for vv in lvar])
firstmon:DPoly:=1$DPoly
ofirstmon:DPoly:=1$DPoly
orecfmon:Record(poly:HDPoly, mult:F) := [1,1]
lx:= lvar.last
while (firstmon:=choosemon(firstmon,ltresult))~=1 repeat
if (v:=firstmon exquo ofirstmon) case "failed" then
recfmon:=rRedPol(transform(eval(firstmon,lx,nval)),B)
else
recfmon:=rRedPol(transform(eval(v,lx,nval))*orecfmon.poly,B)
recfmon.mult := recfmon.mult * orecfmon.mult
cc := gcd(content recfmon.poly, recfmon.mult)
recfmon.poly := (recfmon.poly exquo cc)::HDPoly
recfmon.mult := (recfmon.mult exquo cc)::F
veccoef:VF:=coord(recfmon.poly,vBasis)
ofirstmon:=firstmon
orecfmon := recfmon
lm:=zero(2*ndim+1)
j : Integer
for j in 1..ndim repeat lm(j):=veccoef(j)
lm(ndim+i):=recfmon.mult
lm := reduceRow(linmat, lm, i-1, pivots)
j:=1
while lm(j) = 0 and j<ndim1 repeat j:=j+1
if j=ndim1 then
cordlist:List F:=[lm(j) for j in ndim1..ndim1+(#nBasis)]
antc:=+/[c*b for c in reverse cordlist
for b in concat(firstmon,nBasis)]
result:=concat(primitivePart antc,result)
ltresult:=concat(antc-reductum antc,ltresult)
else
pivots(i) := j
setRow!(linmat,i,lm)
i:=i+1
nBasis:=concat(firstmon,nBasis)
[result,rval]$LVals
----- given a basis of a zero-dimensional ideal,
----- performs a random change of coordinates
----- computes a Groebner basis for the lex ordering
groebgen(L:List DPoly) : cLVars ==
xn:=lvar.last
val := xn::DPoly
nvar1:NNI:=(#lvar-1):NNI
ll: List Z :=[random()$Z rem 11 for i in 1..nvar1]
val:=val+ +/[ll.i*(lvar.i)::DPoly for i in 1..nvar1]
LL:=[elt(univariate(f,xn),val) for f in L]
LL:= groebner(LL)
[LL,ll]$cLVars
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package LGROBP LinGroebnerPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|