1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra limitps.spad}
\author{Clifton J. Williamson, Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package LIMITPS PowerSeriesLimitPackage}
<<package LIMITPS PowerSeriesLimitPackage>>=
)abbrev package LIMITPS PowerSeriesLimitPackage
++ Author: Clifton J. Williamson
++ Date Created: 21 March 1989
++ Date Last Updated: 30 March 1994
++ Basic Operations:
++ Related Domains: UnivariateLaurentSeries(FE,x,a),
++ UnivariatePuiseuxSeries(FE,x,a),ExponentialExpansion(R,FE,x,a)
++ Also See:
++ AMS Classifications:
++ Keywords: limit, functional expression, power series
++ Examples:
++ References:
++ Description:
++ PowerSeriesLimitPackage implements limits of expressions
++ in one or more variables as one of the variables approaches a
++ limiting value. Included are two-sided limits, left- and right-
++ hand limits, and limits at plus or minus infinity.
PowerSeriesLimitPackage(R,FE): Exports == Implementation where
R : Join(GcdDomain,OrderedSet,RetractableTo Integer,_
LinearlyExplicitRingOver Integer)
FE : Join(AlgebraicallyClosedField,TranscendentalFunctionCategory,_
FunctionSpace R)
Z ==> Integer
RN ==> Fraction Integer
RF ==> Fraction Polynomial R
OFE ==> OrderedCompletion FE
OPF ==> OnePointCompletion FE
SY ==> Symbol
EQ ==> Equation
LF ==> LiouvillianFunction
UTS ==> UnivariateTaylorSeries
ULS ==> UnivariateLaurentSeries
UPXS ==> UnivariatePuiseuxSeries
EFULS ==> ElementaryFunctionsUnivariateLaurentSeries
EFUPXS ==> ElementaryFunctionsUnivariatePuiseuxSeries
FS2UPS ==> FunctionSpaceToUnivariatePowerSeries
FS2EXPXP ==> FunctionSpaceToExponentialExpansion
Problem ==> Record(func:String,prob:String)
RESULT ==> Union(OFE,"failed")
TwoSide ==> Record(leftHandLimit:RESULT,rightHandLimit:RESULT)
U ==> Union(OFE,TwoSide,"failed")
SIGNEF ==> ElementaryFunctionSign(R,FE)
Exports ==> with
limit: (FE,EQ OFE) -> U
++ limit(f(x),x = a) computes the real limit \spad{lim(x -> a,f(x))}.
complexLimit: (FE,EQ OPF) -> Union(OPF, "failed")
++ complexLimit(f(x),x = a) computes the complex limit
++ \spad{lim(x -> a,f(x))}.
limit: (FE,EQ FE,String) -> RESULT
++ limit(f(x),x=a,"left") computes the left hand real limit
++ \spad{lim(x -> a-,f(x))};
++ \spad{limit(f(x),x=a,"right")} computes the right hand real limit
++ \spad{lim(x -> a+,f(x))}.
Implementation ==> add
import ToolsForSign(R)
import ElementaryFunctionStructurePackage(R,FE)
zeroFE:FE := 0
anyRootsOrAtrigs? : FE -> Boolean
complLimit : (FE,SY) -> Union(OPF,"failed")
okProblem? : (String,String) -> Boolean
realLimit : (FE,SY) -> U
xxpLimit : (FE,SY) -> RESULT
limitPlus : (FE,SY) -> RESULT
localsubst : (FE,Kernel FE,Z,FE) -> FE
locallimit : (FE,SY,OFE) -> U
locallimitcomplex : (FE,SY,OPF) -> Union(OPF,"failed")
poleLimit:(RN,FE,SY) -> U
poleLimitPlus:(RN,FE,SY) -> RESULT
noX?: (FE,SY) -> Boolean
noX?(fcn,x) == not member?(x,variables fcn)
constant?: FE -> Boolean
constant? fcn == empty? variables fcn
firstNonLogPtr: (FE,SY) -> List Kernel FE
firstNonLogPtr(fcn,x) ==
-- returns a pointer to the first element of kernels(fcn) which
-- has 'x' as a variable, which is not a logarithm, and which is
-- not simply 'x'
list := kernels fcn
while not empty? list repeat
ker := first list
not is?(ker,"log" :: Symbol) and member?(x,variables(ker::FE)) _
and not(x = name(ker)) =>
return list
list := rest list
empty()
finiteValueAtInfinity?: Kernel FE -> Boolean
finiteValueAtInfinity? ker ==
is?(ker,"erf" :: Symbol) => true
is?(ker,"sech" :: Symbol) => true
is?(ker,"csch" :: Symbol) => true
is?(ker,"tanh" :: Symbol) => true
is?(ker,"coth" :: Symbol) => true
is?(ker,"atan" :: Symbol) => true
is?(ker,"acot" :: Symbol) => true
is?(ker,"asec" :: Symbol) => true
is?(ker,"acsc" :: Symbol) => true
is?(ker,"acsch" :: Symbol) => true
is?(ker,"acoth" :: Symbol) => true
false
knownValueAtInfinity?: Kernel FE -> Boolean
knownValueAtInfinity? ker ==
is?(ker,"exp" :: Symbol) => true
is?(ker,"sinh" :: Symbol) => true
is?(ker,"cosh" :: Symbol) => true
false
leftOrRight: (FE,SY,FE) -> SingleInteger
leftOrRight(fcn,x,limVal) ==
-- function is called when limitPlus(fcn,x) = limVal
-- determines whether the limiting value is approached
-- from the left or from the right
(value := limitPlus(inv(fcn - limVal),x)) case "failed" => 0
(inf := whatInfinity(val := value :: OFE)) = 0 =>
error "limit package: internal error"
inf
specialLimit1: (FE,SY) -> RESULT
specialLimitKernel: (Kernel FE,SY) -> RESULT
specialLimitNormalize: (FE,SY) -> RESULT
specialLimit: (FE, SY) -> RESULT
specialLimit(fcn, x) ==
xkers := [k for k in kernels fcn | member?(x,variables(k::FE))]
#xkers = 1 => specialLimit1(fcn,x)
num := numerator fcn
den := denominator fcn
for k in xkers repeat
(fval := limitPlus(k::FE,x)) case "failed" =>
return specialLimitNormalize(fcn,x)
whatInfinity(val := fval::OFE) ~= 0 =>
return specialLimitNormalize(fcn,x)
(valu := retractIfCan(val)@Union(FE,"failed")) case "failed" =>
return specialLimitNormalize(fcn,x)
finVal := valu :: FE
num := eval(num, k, finVal)
den := eval(den, k, finVal)
den = 0 => return specialLimitNormalize(fcn,x)
(num/den) :: OFE :: RESULT
specialLimitNormalize(fcn,x) == -- tries to normalize result first
nfcn := normalize(fcn)
fcn ~= nfcn => limitPlus(nfcn,x)
xkers := [k for k in tower fcn | member?(x,variables(k::FE))]
# xkers ~= 2 => "failed"
expKers := [k for k in xkers | is?(k, "exp" :: Symbol)]
# expKers ~= 1 => "failed"
-- fcn is a rational function of x and exp(g(x)) for some rational function g
expKer := first expKers
(fval := limitPlus(expKer::FE,x)) case "failed" => "failed"
vv := new()$SY; eq : EQ FE := equation(expKer :: FE,vv :: FE)
cc := eval(fcn,eq)
expKerLim := fval :: OFE
-- following test for "failed" is needed due to compiler bug
-- limVal case OFE generates EQCAR(limVal, 1) which fails on atom "failed"
(limVal := locallimit(cc,vv,expKerLim)) case "failed" => "failed"
limVal case OFE =>
limm := limVal :: OFE
(lim := retractIfCan(limm)@Union(FE,"failed")) case "failed" =>
"failed" -- need special handling for directions at infinity
limitPlus(lim, x)
"failed"
-- limit of expression having only 1 kernel involving x
specialLimit1(fcn,x) ==
-- find the first interesting kernel in tower(fcn)
xkers := [k for k in kernels fcn | member?(x,variables(k::FE))]
#xkers ~= 1 => "failed"
ker := first xkers
vv := new()$SY; eq : EQ FE := equation(ker :: FE,vv :: FE)
cc := eval(fcn,eq)
member?(x,variables cc) => "failed"
(lim := specialLimitKernel(ker, x)) case "failed" => lim
argLim : OFE := lim :: OFE
(limVal := locallimit(cc,vv,argLim)) case "failed" => "failed"
limVal case OFE => limVal :: OFE
"failed"
-- limit of single kernel involving x
specialLimitKernel(ker,x) ==
is?(ker,"log" :: Symbol) =>
args := argument ker
empty? args => "failed" -- error "No argument"
not empty? rest args => "failed" -- error "Too many arugments"
arg := first args
-- compute limit(x -> 0+,arg)
(limm := limitPlus(arg,x)) case "failed" => "failed"
lim := limm :: OFE
(inf := whatInfinity lim) = -1 => "failed"
argLim : OFE :=
-- log(+infinity) = +infinity
inf = 1 => lim
-- now 'lim' must be finite
(li := retractIfCan(lim)@Union(FE,"failed") :: FE) = 0 =>
-- log(0) = -infinity
leftOrRight(arg,x,0) = 1 => minusInfinity()
return "failed"
log(li) :: OFE
-- kernel should be a function of one argument f(arg)
args := argument(ker)
empty? args => "failed" -- error "No argument"
not empty? rest args => "failed" -- error "Too many arugments"
arg := first args
-- compute limit(x -> 0+,arg)
(limm := limitPlus(arg,x)) case "failed" => "failed"
lim := limm :: OFE
f := elt(operator ker,(var := new()$SY) :: FE)
-- compute limit(x -> 0+,f(arg))
-- case where 'lim' is finite
(inf := whatInfinity lim) = 0 =>
is?(ker,"erf" :: Symbol) => erf(retract(lim)@FE)$LF(R,FE) :: OFE
(kerValue := locallimit(f,var,lim)) case "failed" => "failed"
kerValue case OFE => kerValue :: OFE
"failed"
-- case where 'lim' is plus infinity
inf = 1 =>
finiteValueAtInfinity? ker =>
val : FE :=
is?(ker,"erf" :: Symbol) => 1
is?(ker,"sech" :: Symbol) => 0
is?(ker,"csch" :: Symbol) => 0
is?(ker,"tanh" :: Symbol) => 0
is?(ker,"coth" :: Symbol) => 0
is?(ker,"atan" :: Symbol) => pi()/(2 :: FE)
is?(ker,"acot" :: Symbol) => 0
is?(ker,"asec" :: Symbol) => pi()/(2 :: FE)
is?(ker,"acsc" :: Symbol) => 0
is?(ker,"acsch" :: Symbol) => 0
-- ker must be acoth
0
val :: OFE
knownValueAtInfinity? ker =>
lim -- limit(exp, cosh, sinh ,x=inf) = inf
"failed"
-- case where 'lim' is minus infinity
finiteValueAtInfinity? ker =>
val : FE :=
is?(ker,"erf" :: Symbol) => -1
is?(ker,"sech" :: Symbol) => 0
is?(ker,"csch" :: Symbol) => 0
is?(ker,"tanh" :: Symbol) => 0
is?(ker,"coth" :: Symbol) => 0
is?(ker,"atan" :: Symbol) => -pi()/(2 :: FE)
is?(ker,"acot" :: Symbol) => pi()
is?(ker,"asec" :: Symbol) => -pi()/(2 :: FE)
is?(ker,"acsc" :: Symbol) => -pi()
is?(ker,"acsch" :: Symbol) => 0
-- ker must be acoth
0
val :: OFE
knownValueAtInfinity? ker =>
is?(ker,"exp" :: Symbol) => (0@FE) :: OFE
is?(ker,"sinh" :: Symbol) => lim
is?(ker,"cosh" :: Symbol) => plusInfinity()
"failed"
"failed"
logOnlyLimit: (FE,SY) -> RESULT
logOnlyLimit(coef,x) ==
-- this function is called when the 'constant' coefficient involves
-- the variable 'x'. Its purpose is to compute a right hand limit
-- of an expression involving log x. Here log x is replaced by -1/v,
-- where v is a new variable. If the new expression no longer involves
-- x, then take the right hand limit as v -> 0+
vv := new()$SY
eq : EQ FE := equation(log(x :: FE),-inv(vv :: FE))
member?(x,variables(cc := eval(coef,eq))) => "failed"
limitPlus(cc,vv)
locallimit(fcn,x,a) ==
-- Here 'fcn' is a function f(x) = f(x,...) in 'x' and possibly
-- other variables, and 'a' is a limiting value. The function
-- computes lim(x -> a,f(x)).
xK := retract(x::FE)@Kernel(FE)
(n := whatInfinity a) = 0 =>
realLimit(localsubst(fcn,xK,1,retract(a)@FE),x)
(u := limitPlus(eval(fcn,xK,n * inv(xK::FE)),x))
case "failed" => "failed"
u::OFE
localsubst(fcn, k, n, a) ==
a = 0 and n = 1 => fcn
eval(fcn,k,n * (k::FE) + a)
locallimitcomplex(fcn,x,a) ==
xK := retract(x::FE)@Kernel(FE)
(g := retractIfCan(a)@Union(FE,"failed")) case FE =>
complLimit(localsubst(fcn,xK,1,g::FE),x)
complLimit(eval(fcn,xK,inv(xK::FE)),x)
limit(fcn,eq,str) ==
(xx := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" =>
error "limit:left hand side must be a variable"
x := xx :: SY; a := rhs eq
xK := retract(x::FE)@Kernel(FE)
limitPlus(localsubst(fcn,xK,direction str,a),x)
anyRootsOrAtrigs? fcn ==
-- determines if 'fcn' has any kernels which are roots
-- or if 'fcn' has any kernels which are inverse trig functions
-- which could produce series expansions with fractional exponents
for kernel in tower fcn repeat
is?(kernel,"nthRoot" :: Symbol) => return true
is?(kernel,"asin" :: Symbol) => return true
is?(kernel,"acos" :: Symbol) => return true
is?(kernel,"asec" :: Symbol) => return true
is?(kernel,"acsc" :: Symbol) => return true
false
complLimit(fcn,x) ==
-- computes lim(x -> 0,fcn) using a Puiseux expansion of fcn,
-- if fcn is an expression involving roots, and using a Laurent
-- expansion of fcn otherwise
lim : FE :=
anyRootsOrAtrigs? fcn =>
ppack := FS2UPS(R,FE,RN,_
UPXS(FE,x,zeroFE),EFUPXS(FE,ULS(FE,x,zeroFE),UPXS(FE,x,zeroFE),_
EFULS(FE,UTS(FE,x,zeroFE),ULS(FE,x,zeroFE))),x)
pseries := exprToUPS(fcn,false,"complex")$ppack
pseries case %problem => return "failed"
if pole?(upxs := pseries.%series) then upxs := map(normalize,upxs)
pole? upxs => return infinity()
coefficient(upxs,0)
lpack := FS2UPS(R,FE,Z,ULS(FE,x,zeroFE),_
EFULS(FE,UTS(FE,x,zeroFE),ULS(FE,x,zeroFE)),x)
lseries := exprToUPS(fcn,false,"complex")$lpack
lseries case %problem => return "failed"
if pole?(uls := lseries.%series) then uls := map(normalize,uls)
pole? uls => return infinity()
coefficient(uls,0)
-- can the following happen?
member?(x,variables lim) =>
member?(x,variables(answer := normalize lim)) =>
error "limit: can't evaluate limit"
answer :: OPF
lim :: FE :: OPF
okProblem?(function,problem) ==
(function = "log") or (function = "nth root") =>
(problem = "series of non-zero order") or _
(problem = "negative leading coefficient")
(function = "atan") => problem = "branch problem"
(function = "erf") => problem = "unknown kernel"
problem = "essential singularity"
poleLimit(order,coef,x) ==
-- compute limit for function with pole
not member?(x,variables coef) =>
(s := sign(coef)$SIGNEF) case Integer =>
rtLim := (s :: Integer) * plusInfinity()
even? numer order => rtLim
even? denom order => ["failed",rtLim]$TwoSide
[-rtLim,rtLim]$TwoSide
-- infinite limit, but cannot determine sign
"failed"
error "limit: can't evaluate limit"
poleLimitPlus(order,coef,x) ==
-- compute right hand limit for function with pole
not member?(x,variables coef) =>
(s := sign(coef)$SIGNEF) case Integer =>
(s :: Integer) * plusInfinity()
-- infinite limit, but cannot determine sign
"failed"
(clim := specialLimit(coef,x)) case "failed" => "failed"
zero? (lim := clim :: OFE) =>
-- in this event, we need to determine if the limit of
-- the coef is 0+ or 0-
(cclim := specialLimit(inv coef,x)) case "failed" => "failed"
ss := whatInfinity(cclim :: OFE) :: Z
zero? ss =>
error "limit: internal error"
ss * plusInfinity()
t := whatInfinity(lim :: OFE) :: Z
zero? t =>
(tt := sign(coef)$SIGNEF) case Integer =>
(tt :: Integer) * plusInfinity()
-- infinite limit, but cannot determine sign
"failed"
t * plusInfinity()
realLimit(fcn,x) ==
-- computes lim(x -> 0,fcn) using a Puiseux expansion of fcn,
-- if fcn is an expression involving roots, and using a Laurent
-- expansion of fcn otherwise
lim : Union(FE,"failed") :=
anyRootsOrAtrigs? fcn =>
ppack := FS2UPS(R,FE,RN,_
UPXS(FE,x,zeroFE),EFUPXS(FE,ULS(FE,x,zeroFE),UPXS(FE,x,zeroFE),_
EFULS(FE,UTS(FE,x,zeroFE),ULS(FE,x,zeroFE))),x)
pseries := exprToUPS(fcn,true,"real: two sides")$ppack
pseries case %problem =>
trouble := pseries.%problem
function := trouble.func; problem := trouble.prob
okProblem?(function,problem) =>
left :=
xK : Kernel FE := kernel x
fcn0 := eval(fcn,xK,-(xK :: FE))
limitPlus(fcn0,x)
right := limitPlus(fcn,x)
(left case "failed") and (right case "failed") =>
return "failed"
if (left case OFE) and (right case OFE) then
(left :: OFE) = (right :: OFE) => return (left :: OFE)
return([left,right]$TwoSide)
return "failed"
if pole?(upxs := pseries.%series) then upxs := map(normalize,upxs)
pole? upxs =>
cp := coefficient(upxs,ordp := order upxs)
return poleLimit(ordp,cp,x)
coefficient(upxs,0)
lpack := FS2UPS(R,FE,Z,ULS(FE,x,zeroFE),_
EFULS(FE,UTS(FE,x,zeroFE),ULS(FE,x,zeroFE)),x)
lseries := exprToUPS(fcn,true,"real: two sides")$lpack
lseries case %problem =>
trouble := lseries.%problem
function := trouble.func; problem := trouble.prob
okProblem?(function,problem) =>
left :=
xK : Kernel FE := kernel x
fcn0 := eval(fcn,xK,-(xK :: FE))
limitPlus(fcn0,x)
right := limitPlus(fcn,x)
(left case "failed") and (right case "failed") =>
return "failed"
if (left case OFE) and (right case OFE) then
(left :: OFE) = (right :: OFE) => return (left :: OFE)
return([left,right]$TwoSide)
return "failed"
if pole?(uls := lseries.%series) then uls := map(normalize,uls)
pole? uls =>
cl := coefficient(uls,ordl := order uls)
return poleLimit(ordl :: RN,cl,x)
coefficient(uls,0)
lim case "failed" => "failed"
member?(x,variables(lim :: FE)) =>
member?(x,variables(answer := normalize(lim :: FE))) =>
error "limit: can't evaluate limit"
answer :: OFE
lim :: FE :: OFE
xxpLimit(fcn,x) ==
-- computes lim(x -> 0+,fcn) using an exponential expansion of fcn
xpack := FS2EXPXP(R,FE,x,zeroFE)
xxp := exprToXXP(fcn,true)$xpack
xxp case %problem => "failed"
limitPlus(xxp.%expansion)
limitPlus(fcn,x) ==
-- computes lim(x -> 0+,fcn) using a generalized Puiseux expansion
-- of fcn, if fcn is an expression involving roots, and using a
-- generalized Laurent expansion of fcn otherwise
lim : Union(FE,"failed") :=
anyRootsOrAtrigs? fcn =>
ppack := FS2UPS(R,FE,RN,_
UPXS(FE,x,zeroFE),EFUPXS(FE,ULS(FE,x,zeroFE),UPXS(FE,x,zeroFE),_
EFULS(FE,UTS(FE,x,zeroFE),ULS(FE,x,zeroFE))),x)
pseries := exprToGenUPS(fcn,true,"real: right side")$ppack
pseries case %problem =>
trouble := pseries.%problem
ff := trouble.func; pp := trouble.prob
(pp = "negative leading coefficient") => return "failed"
"failed"
-- pseries case %problem => return "failed"
if pole?(upxs := pseries.%series) then upxs := map(normalize,upxs)
pole? upxs =>
cp := coefficient(upxs,ordp := order upxs)
return poleLimitPlus(ordp,cp,x)
coefficient(upxs,0)
lpack := FS2UPS(R,FE,Z,ULS(FE,x,zeroFE),_
EFULS(FE,UTS(FE,x,zeroFE),ULS(FE,x,zeroFE)),x)
lseries := exprToGenUPS(fcn,true,"real: right side")$lpack
lseries case %problem =>
trouble := lseries.%problem
ff := trouble.func; pp := trouble.prob
(pp = "negative leading coefficient") => return "failed"
"failed"
-- lseries case %problem => return "failed"
if pole?(uls := lseries.%series) then uls := map(normalize,uls)
pole? uls =>
cl := coefficient(uls,ordl := order uls)
return poleLimitPlus(ordl :: RN,cl,x)
coefficient(uls,0)
lim case "failed" =>
(xLim := xxpLimit(fcn,x)) case "failed" => specialLimit(fcn,x)
xLim
member?(x,variables(lim :: FE)) =>
member?(x,variables(answer := normalize(lim :: FE))) =>
(xLim := xxpLimit(answer,x)) case "failed" => specialLimit(answer,x)
xLim
answer :: OFE
lim :: FE :: OFE
limit(fcn:FE,eq:EQ OFE) ==
(f := retractIfCan(lhs eq)@Union(FE,"failed")) case "failed" =>
error "limit:left hand side must be a variable"
(xx := retractIfCan(f)@Union(SY,"failed")) case "failed" =>
error "limit:left hand side must be a variable"
x := xx :: SY; a := rhs eq
locallimit(fcn,x,a)
complexLimit(fcn:FE,eq:EQ OPF) ==
(f := retractIfCan(lhs eq)@Union(FE,"failed")) case "failed" =>
error "limit:left hand side must be a variable"
(xx := retractIfCan(f)@Union(SY,"failed")) case "failed" =>
error "limit:left hand side must be a variable"
x := xx :: SY; a := rhs eq
locallimitcomplex(fcn,x,a)
@
\section{package SIGNEF ElementaryFunctionSign}
<<package SIGNEF ElementaryFunctionSign>>=
)abbrev package SIGNEF ElementaryFunctionSign
++ Author: Manuel Bronstein
++ Date Created: 25 Aug 1989
++ Date Last Updated: 4 May 1992
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: elementary function, sign
++ Examples:
++ References:
++ Description:
++ This package provides functions to determine the sign of an
++ elementary function around a point or infinity.
ElementaryFunctionSign(R,F): Exports == Implementation where
R : Join(IntegralDomain,OrderedSet,RetractableTo Integer,_
LinearlyExplicitRingOver Integer,GcdDomain)
F : Join(AlgebraicallyClosedField,TranscendentalFunctionCategory,_
FunctionSpace R)
N ==> NonNegativeInteger
Z ==> Integer
SY ==> Symbol
RF ==> Fraction Polynomial R
ORF ==> OrderedCompletion RF
OFE ==> OrderedCompletion F
K ==> Kernel F
P ==> SparseMultivariatePolynomial(R, K)
U ==> Union(Z, "failed")
FS2 ==> FunctionSpaceFunctions2
Exports ==> with
sign: F -> U
++ sign(f) returns the sign of f if it is constant everywhere.
sign: (F, SY, OFE) -> U
++ sign(f, x, a) returns the sign of f as x nears \spad{a}, from both
++ sides if \spad{a} is finite.
sign: (F, SY, F, String) -> U
++ sign(f, x, a, s) returns the sign of f as x nears \spad{a} from below
++ if s is "left", or above if s is "right".
Implementation ==> add
macro POSIT == 'positive
macro NEGAT == 'negative
import ToolsForSign R
import RationalFunctionSign(R)
import PowerSeriesLimitPackage(R, F)
import TrigonometricManipulations(R, F)
smpsign : P -> U
sqfrSign: P -> U
termSign: P -> U
kerSign : K -> U
listSign: (List P,Z) -> U
insign : (F,SY,OFE, N) -> U
psign : (F,SY,F,String, N) -> U
ofesign : OFE -> U
overRF : OFE -> Union(ORF, "failed")
sign(f, x, a) ==
not real? f => "failed"
insign(f, x, a, 0)
sign(f, x, a, st) ==
not real? f => "failed"
psign(f, x, a, st, 0)
sign f ==
not real? f => "failed"
(u := retractIfCan(f)@Union(RF,"failed")) case RF => sign(u::RF)
(un := smpsign numer f) case Z and (ud := smpsign denom f) case Z =>
un::Z * ud::Z
--abort if there are any variables
not empty? variables f => "failed"
-- abort in the presence of algebraic numbers
member?('rootOf,map(name,operators f)$ListFunctions2(BasicOperator,Symbol)) => "failed"
-- In the last resort try interval evaluation where feasible.
if R has ConvertibleTo Float then
import Interval(Float)
import Expression(Interval Float)
mapfun : (R -> Interval(Float)) := interval(convert(#1)$R)
f2 : Expression(Interval Float) := map(mapfun,f)$FS2(R,F,Interval(Float),Expression(Interval Float))
r : Union(Interval(Float),"failed") := retractIfCan f2
if r case "failed" then return "failed"
negative? r => return(-1)
positive? r => return 1
zero? r => return 0
"failed"
"failed"
overRF a ==
(n := whatInfinity a) = 0 =>
(u := retractIfCan(retract(a)@F)@Union(RF,"failed")) _
case "failed" => "failed"
u::RF::ORF
n * plusInfinity()$ORF
ofesign a ==
(n := whatInfinity a) ~= 0 => convert(n)@Z
sign(retract(a)@F)
insign(f, x, a, m) ==
m > 10 => "failed" -- avoid infinite loops for now
(uf := retractIfCan(f)@Union(RF,"failed")) case RF and
(ua := overRF a) case ORF => sign(uf::RF, x, ua::ORF)
eq : Equation OFE := equation(x :: F :: OFE,a)
(u := limit(f,eq)) case "failed" => "failed"
u case OFE =>
(n := whatInfinity(u::OFE)) ~= 0 => convert(n)@Z
(v := retract(u::OFE)@F) = 0 =>
(s := insign(differentiate(f, x), x, a, m + 1)) case "failed"
=> "failed"
- s::Z * n
sign v
(u.leftHandLimit case "failed") or
(u.rightHandLimit case "failed") => "failed"
(ul := ofesign(u.leftHandLimit::OFE)) case "failed" => "failed"
(ur := ofesign(u.rightHandLimit::OFE)) case "failed" => "failed"
(ul::Z) = (ur::Z) => ul
"failed"
psign(f, x, a, st, m) ==
m > 10 => "failed" -- avoid infinite loops for now
f = 0 => 0
(uf := retractIfCan(f)@Union(RF,"failed")) case RF and
(ua := retractIfCan(a)@Union(RF,"failed")) case RF =>
sign(uf::RF, x, ua::RF, st)
eq : Equation F := equation(x :: F,a)
(u := limit(f,eq,st)) case "failed" => "failed"
u case OFE =>
(n := whatInfinity(u::OFE)) ~= 0 => convert(n)@Z
(v := retract(u::OFE)@F) = 0 =>
(s := psign(differentiate(f,x),x,a,st,m + 1)) case "failed"=>
"failed"
direction(st) * s::Z
sign v
smpsign p ==
(r := retractIfCan(p)@Union(R,"failed")) case R => sign(r::R)
(u := sign(retract(unit(s := squareFree p))@R)) case "failed" =>
"failed"
ans := u::Z
for term in factorList s | odd?(term.xpnt) repeat
(u := sqfrSign(term.fctr)) case "failed" => return "failed"
ans := ans * u::Z
ans
sqfrSign p ==
(u := termSign first(l := monomials p)) case "failed" => "failed"
listSign(rest l, u::Z)
listSign(l, s) ==
for term in l repeat
(u := termSign term) case "failed" => return "failed"
not(s = u::Z) => return "failed"
s
termSign term ==
(us := sign leadingCoefficient term) case "failed" => "failed"
for var in (lv := variables term) repeat
odd? degree(term, var) =>
empty? rest lv and (vs := kerSign first lv) case Z =>
return(us::Z * vs::Z)
return "failed"
us::Z
kerSign k ==
has?(op := operator k, NEGAT) => -1
has?(op, POSIT) or is?(op, "pi"::SY) or is?(op,"exp"::SY) or
is?(op,"cosh"::SY) or is?(op,"sech"::SY) => 1
empty?(arg := argument k) => "failed"
(s := sign first arg) case "failed" =>
is?(op,"nthRoot" :: SY) =>
even?(retract(second arg)@Z) => 1
"failed"
"failed"
is?(op,"log" :: SY) =>
s::Z < 0 => "failed"
sign(first arg - 1)
is?(op,"tanh" :: SY) or is?(op,"sinh" :: SY) or
is?(op,"csch" :: SY) or is?(op,"coth" :: SY) => s
is?(op,"nthRoot" :: SY) =>
even?(retract(second arg)@Z) =>
s::Z < 0 => "failed"
s
s
"failed"
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2009, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package LIMITPS PowerSeriesLimitPackage>>
<<package SIGNEF ElementaryFunctionSign>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|