1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra lie.spad}
\author{Johannes Grabmeier}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain LIE AssociatedLieAlgebra}
<<domain LIE AssociatedLieAlgebra>>=
)abbrev domain LIE AssociatedLieAlgebra
++ Author: J. Grabmeier
++ Date Created: 07 March 1991
++ Date Last Updated: 14 June 1991
++ Basic Operations: *,**,+,-
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: associated Liealgebra
++ References:
++ Description:
++ AssociatedLieAlgebra takes an algebra \spad{A}
++ and uses \spadfun{*$A} to define the
++ Lie bracket \spad{a*b := (a *$A b - b *$A a)} (commutator). Note that
++ the notation \spad{[a,b]} cannot be used due to
++ restrictions of the current compiler.
++ This domain only gives a Lie algebra if the
++ Jacobi-identity \spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds
++ for all \spad{a},\spad{b},\spad{c} in \spad{A}.
++ This relation can be checked by
++ \spad{lieAdmissible?()$A}.
++
++ If the underlying algebra is of type
++ \spadtype{FramedNonAssociativeAlgebra(R)} (i.e. a non
++ associative algebra over R which is a free \spad{R}-module of finite
++ rank, together with a fixed \spad{R}-module basis), then the same
++ is true for the associated Lie algebra.
++ Also, if the underlying algebra is of type
++ \spadtype{FiniteRankNonAssociativeAlgebra(R)} (i.e. a non
++ associative algebra over R which is a free R-module of finite
++ rank), then the same is true for the associated Lie algebra.
AssociatedLieAlgebra(R:CommutativeRing,A:NonAssociativeAlgebra R):
public == private where
public ==> Join (NonAssociativeAlgebra R, CoercibleTo A) with
coerce : A -> %
++ coerce(a) coerces the element \spad{a} of the algebra \spad{A}
++ to an element of the Lie
++ algebra \spadtype{AssociatedLieAlgebra}(R,A).
if A has FramedNonAssociativeAlgebra(R) then
FramedNonAssociativeAlgebra(R)
if A has FiniteRankNonAssociativeAlgebra(R) then
FiniteRankNonAssociativeAlgebra(R)
private ==> A add
Rep := A
(a:%) * (b:%) == (a::Rep) * $Rep (b::Rep) -$Rep (b::Rep) * $Rep (a::Rep)
coerce(a:%):A == a :: Rep
coerce(a:A):% == a :: %
(a:%) ** (n:PositiveInteger) ==
n = 1 => a
0
@
\section{domain JORDAN AssociatedJordanAlgebra}
<<domain JORDAN AssociatedJordanAlgebra>>=
)abbrev domain JORDAN AssociatedJordanAlgebra
++ Author: J. Grabmeier
++ Date Created: 14 June 1991
++ Date Last Updated: 14 June 1991
++ Basic Operations: *,**,+,-
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: associated Jordan algebra
++ References:
++ Description:
++ AssociatedJordanAlgebra takes an algebra \spad{A} and uses \spadfun{*$A}
++ to define the new multiplications \spad{a*b := (a *$A b + b *$A a)/2}
++ (anticommutator).
++ The usual notation \spad{{a,b}_+} cannot be used due to
++ restrictions in the current language.
++ This domain only gives a Jordan algebra if the
++ Jordan-identity \spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds
++ for all \spad{a},\spad{b},\spad{c} in \spad{A}.
++ This relation can be checked by
++ \spadfun{jordanAdmissible?()$A}.
++
++ If the underlying algebra is of type
++ \spadtype{FramedNonAssociativeAlgebra(R)} (i.e. a non
++ associative algebra over R which is a free R-module of finite
++ rank, together with a fixed R-module basis), then the same
++ is true for the associated Jordan algebra.
++ Moreover, if the underlying algebra is of type
++ \spadtype{FiniteRankNonAssociativeAlgebra(R)} (i.e. a non
++ associative algebra over R which is a free R-module of finite
++ rank), then the same true for the associated Jordan algebra.
AssociatedJordanAlgebra(R:CommutativeRing,A:NonAssociativeAlgebra R):
public == private where
public ==> Join (NonAssociativeAlgebra R, CoercibleTo A) with
coerce : A -> %
++ coerce(a) coerces the element \spad{a} of the algebra \spad{A}
++ to an element of the Jordan algebra
++ \spadtype{AssociatedJordanAlgebra}(R,A).
if A has FramedNonAssociativeAlgebra(R) then _
FramedNonAssociativeAlgebra(R)
if A has FiniteRankNonAssociativeAlgebra(R) then _
FiniteRankNonAssociativeAlgebra(R)
private ==> A add
Rep := A
two : R := (1$R + 1$R)
oneHalf : R := (recip two) :: R
(a:%) * (b:%) ==
zero? two => error
"constructor must no be called with Ring of characteristic 2"
((a::Rep) * $Rep (b::Rep) +$Rep (b::Rep) * $Rep (a::Rep)) * oneHalf
-- (a::Rep) * $Rep (b::Rep) +$Rep (b::Rep) * $Rep (a::Rep)
coerce(a:%):A == a :: Rep
coerce(a:A):% == a :: %
(a:%) ** (n:PositiveInteger) == a
@
\section{domain LSQM LieSquareMatrix}
<<domain LSQM LieSquareMatrix>>=
)abbrev domain LSQM LieSquareMatrix
++ Author: J. Grabmeier
++ Date Created: 07 March 1991
++ Date Last Updated: 08 March 1991
++ Basic Operations:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ LieSquareMatrix(n,R) implements the Lie algebra of the n by n
++ matrices over the commutative ring R.
++ The Lie bracket (commutator) of the algebra is given by
++ \spad{a*b := (a *$SQMATRIX(n,R) b - b *$SQMATRIX(n,R) a)},
++ where \spadfun{*$SQMATRIX(n,R)} is the usual matrix multiplication.
LieSquareMatrix(n,R): Exports == Implementation where
n : PositiveInteger
R : CommutativeRing
Row ==> DirectProduct(n,R)
Col ==> DirectProduct(n,R)
Exports ==> Join(SquareMatrixCategory(n,R,Row,Col), CoercibleTo Matrix R,_
FramedNonAssociativeAlgebra R) --with
Implementation ==> AssociatedLieAlgebra (R,SquareMatrix(n, R)) add
Rep := AssociatedLieAlgebra (R,SquareMatrix(n, R))
-- local functions
n2 : PositiveInteger := n*n
convDM : DirectProduct(n2,R) -> %
conv : DirectProduct(n2,R) -> SquareMatrix(n,R)
--++ converts n2-vector to (n,n)-matrix row by row
conv v ==
cond : Matrix(R) := new(n,n,0$R)$Matrix(R)
z : Integer := 0
for i in 1..n repeat
for j in 1..n repeat
z := z+1
setelt(cond,i,j,v.z)
squareMatrix(cond)$SquareMatrix(n, R)
coordinates(a:%,b:Vector(%)):Vector(R) ==
-- only valid for b canonicalBasis
res : Vector R := new(n2,0$R)
z : Integer := 0
for i in 1..n repeat
for j in 1..n repeat
z := z+1
res.z := elt(a,i,j)$%
res
convDM v ==
sq := conv v
coerce(sq)$Rep :: %
basis() ==
n2 : PositiveInteger := n*n
ldp : List DirectProduct(n2,R) :=
[unitVector(i::PositiveInteger)$DirectProduct(n2,R) for i in 1..n2]
res:Vector % := vector map(convDM,_
ldp)$ListFunctions2(DirectProduct(n2,R), %)
someBasis() == basis()
rank() == n*n
-- transpose: % -> %
-- ++ computes the transpose of a matrix
-- squareMatrix: Matrix R -> %
-- ++ converts a Matrix to a LieSquareMatrix
-- coerce: % -> Matrix R
-- ++ converts a LieSquareMatrix to a Matrix
-- symdecomp : % -> Record(sym:%,antisym:%)
-- if R has commutative("*") then
-- minorsVect: -> Vector(Union(R,"uncomputed")) --range: 1..2**n-1
-- if R has commutative("*") then central
-- if R has commutative("*") and R has unitsKnown then unitsKnown
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<domain LIE AssociatedLieAlgebra>>
<<domain JORDAN AssociatedJordanAlgebra>>
<<domain LSQM LieSquareMatrix>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|