1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra laurent.spad}
\author{Clifton J. Williamson, Bill Burge}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{category ULSCCAT UnivariateLaurentSeriesConstructorCategory}
<<category ULSCCAT UnivariateLaurentSeriesConstructorCategory>>=
)abbrev category ULSCCAT UnivariateLaurentSeriesConstructorCategory
++ Author: Clifton J. Williamson
++ Date Created: 6 February 1990
++ Date Last Updated: 10 May 1990
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: series, Laurent, Taylor
++ Examples:
++ References:
++ Description:
++ This is a category of univariate Laurent series constructed from
++ univariate Taylor series. A Laurent series is represented by a pair
++ \spad{[n,f(x)]}, where n is an arbitrary integer and \spad{f(x)}
++ is a Taylor series. This pair represents the Laurent series
++ \spad{x**n * f(x)}.
UnivariateLaurentSeriesConstructorCategory(Coef,UTS):_
Category == Definition where
Coef: Ring
UTS : UnivariateTaylorSeriesCategory Coef
I ==> Integer
Definition ==> Join(UnivariateLaurentSeriesCategory(Coef),_
RetractableTo UTS, CoercibleFrom UTS) with
laurent: (I,UTS) -> %
++ \spad{laurent(n,f(x))} returns \spad{x**n * f(x)}.
degree: % -> I
++ \spad{degree(f(x))} returns the degree of the lowest order term of
++ \spad{f(x)}, which may have zero as a coefficient.
taylorRep: % -> UTS
++ \spad{taylorRep(f(x))} returns \spad{g(x)}, where
++ \spad{f = x**n * g(x)} is represented by \spad{[n,g(x)]}.
removeZeroes: % -> %
++ \spad{removeZeroes(f(x))} removes leading zeroes from the
++ representation of the Laurent series \spad{f(x)}.
++ A Laurent series is represented by (1) an exponent and
++ (2) a Taylor series which may have leading zero coefficients.
++ When the Taylor series has a leading zero coefficient, the
++ 'leading zero' is removed from the Laurent series as follows:
++ the series is rewritten by increasing the exponent by 1 and
++ dividing the Taylor series by its variable.
++ Note: \spad{removeZeroes(f)} removes all leading zeroes from f
removeZeroes: (I,%) -> %
++ \spad{removeZeroes(n,f(x))} removes up to n leading zeroes from
++ the Laurent series \spad{f(x)}.
++ A Laurent series is represented by (1) an exponent and
++ (2) a Taylor series which may have leading zero coefficients.
++ When the Taylor series has a leading zero coefficient, the
++ 'leading zero' is removed from the Laurent series as follows:
++ the series is rewritten by increasing the exponent by 1 and
++ dividing the Taylor series by its variable.
taylor: % -> UTS
++ taylor(f(x)) converts the Laurent series f(x) to a Taylor series,
++ if possible. Error: if this is not possible.
taylorIfCan: % -> Union(UTS,"failed")
++ \spad{taylorIfCan(f(x))} converts the Laurent series \spad{f(x)}
++ to a Taylor series, if possible. If this is not possible,
++ "failed" is returned.
if Coef has Field then QuotientFieldCategory(UTS)
--++ the quotient field of univariate Taylor series over a field is
--++ the field of Laurent series
add
zero? x == zero? taylorRep x
retract(x:%):UTS == taylor x
retractIfCan(x:%):Union(UTS,"failed") == taylorIfCan x
@
\section{domain ULSCONS UnivariateLaurentSeriesConstructor}
<<domain ULSCONS UnivariateLaurentSeriesConstructor>>=
)abbrev domain ULSCONS UnivariateLaurentSeriesConstructor
++ Authors: Bill Burge, Clifton J. Williamson
++ Date Created: August 1988
++ Date Last Updated: 17 June 1996
++ Fix History:
++ 14 June 1996: provided missing exquo: (%,%) -> % (Frederic Lehobey)
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: series, Laurent, Taylor
++ Examples:
++ References:
++ Description:
++ This package enables one to construct a univariate Laurent series
++ domain from a univariate Taylor series domain. Univariate
++ Laurent series are represented by a pair \spad{[n,f(x)]}, where n is
++ an arbitrary integer and \spad{f(x)} is a Taylor series. This pair
++ represents the Laurent series \spad{x**n * f(x)}.
UnivariateLaurentSeriesConstructor(Coef,UTS):_
Exports == Implementation where
Coef : Ring
UTS : UnivariateTaylorSeriesCategory Coef
I ==> Integer
L ==> List
NNI ==> NonNegativeInteger
OUT ==> OutputForm
P ==> Polynomial Coef
RF ==> Fraction Polynomial Coef
RN ==> Fraction Integer
ST ==> Stream Coef
TERM ==> Record(k:I,c:Coef)
monom ==> monomial$UTS
EFULS ==> ElementaryFunctionsUnivariateLaurentSeries(Coef,UTS,%)
STTAYLOR ==> StreamTaylorSeriesOperations Coef
Exports ==> UnivariateLaurentSeriesConstructorCategory(Coef,UTS)
Implementation ==> add
--% representation
Rep := Record(expon:I,ps:UTS)
getExpon : % -> I
getUTS : % -> UTS
getExpon x == x.expon
getUTS x == x.ps
--% creation and destruction
laurent(n,psr) == [n,psr]
taylorRep x == getUTS x
degree x == getExpon x
0 == laurent(0,0)
1 == laurent(0,1)
monomial(s,e) == laurent(e,s::UTS)
coerce(uts:UTS):% == laurent(0,uts)
coerce(r:Coef):% == r :: UTS :: %
coerce(i:I):% == i :: Coef :: %
taylorIfCan uls ==
n := getExpon uls
n < 0 =>
uls := removeZeroes(-n,uls)
getExpon(uls) < 0 => "failed"
getUTS uls
n = 0 => getUTS uls
getUTS(uls) * monom(1,n :: NNI)
taylor uls ==
(uts := taylorIfCan uls) case "failed" =>
error "taylor: Laurent series has a pole"
uts :: UTS
termExpon: TERM -> I
termExpon term == term.k
termCoef: TERM -> Coef
termCoef term == term.c
rec: (I,Coef) -> TERM
rec(exponent,coef) == [exponent,coef]
recs: (ST,I) -> Stream TERM
recs(st,n) == delay
empty? st => empty()
zero? (coef := frst st) => recs(rst st,n + 1)
concat(rec(n,coef),recs(rst st,n + 1))
terms x == recs(coefficients getUTS x,getExpon x)
recsToCoefs: (Stream TERM,I) -> ST
recsToCoefs(st,n) == delay
empty? st => empty()
term := frst st; ex := termExpon term
n = ex => concat(termCoef term,recsToCoefs(rst st,n + 1))
concat(0,recsToCoefs(rst st,n + 1))
series st ==
empty? st => 0
ex := termExpon frst st
laurent(ex,series recsToCoefs(st,ex))
--% normalizations
removeZeroes x ==
empty? coefficients(xUTS := getUTS x) => 0
coefficient(xUTS,0) = 0 =>
removeZeroes laurent(getExpon(x) + 1,quoByVar xUTS)
x
removeZeroes(n,x) ==
n <= 0 => x
empty? coefficients(xUTS := getUTS x) => 0
coefficient(xUTS,0) = 0 =>
removeZeroes(n - 1,laurent(getExpon(x) + 1,quoByVar xUTS))
x
--% predicates
x = y ==
EQ(x,y)$Lisp => true
(expDiff := getExpon(x) - getExpon(y)) = 0 =>
getUTS(x) = getUTS(y)
abs(expDiff) > _$streamCount$Lisp => false
expDiff > 0 =>
getUTS(x) * monom(1,expDiff :: NNI) = getUTS(y)
getUTS(y) * monom(1,(- expDiff) :: NNI) = getUTS(x)
pole? x ==
(n := degree x) >= 0 => false
x := removeZeroes(-n,x)
degree x < 0
--% arithmetic
x + y ==
n := getExpon(x) - getExpon(y)
n >= 0 =>
laurent(getExpon y,getUTS(y) + getUTS(x) * monom(1,n::NNI))
laurent(getExpon x,getUTS(x) + getUTS(y) * monom(1,(-n)::NNI))
x - y ==
n := getExpon(x) - getExpon(y)
n >= 0 =>
laurent(getExpon y,getUTS(x) * monom(1,n::NNI) - getUTS(y))
laurent(getExpon x,getUTS(x) - getUTS(y) * monom(1,(-n)::NNI))
x:% * y:% == laurent(getExpon x + getExpon y,getUTS x * getUTS y)
x:% ** n:NNI ==
zero? n =>
zero? x => error "0 ** 0 is undefined"
1
laurent(n * getExpon(x),getUTS(x) ** n)
recip x ==
x := removeZeroes(1000,x)
zero? coefficient(x,d := degree x) => "failed"
(uts := recip getUTS x) case "failed" => "failed"
laurent(-d,uts :: UTS)
elt(uls1:%,uls2:%) ==
(uts := taylorIfCan uls2) case "failed" =>
error "elt: second argument must have positive order"
uts2 := uts :: UTS
not zero? coefficient(uts2,0) =>
error "elt: second argument must have positive order"
if (deg := getExpon uls1) < 0 then uls1 := removeZeroes(-deg,uls1)
(deg := getExpon uls1) < 0 =>
(recipr := recip(uts2 :: %)) case "failed" =>
error "elt: second argument not invertible"
uts1 := taylor(uls1 * monomial(1,-deg))
(elt(uts1,uts2) :: %) * (recipr :: %) ** ((-deg) :: NNI)
elt(taylor uls1,uts2) :: %
eval(uls:%,r:Coef) ==
if (n := getExpon uls) < 0 then uls := removeZeroes(-n,uls)
uts := getUTS uls
(n := getExpon uls) < 0 =>
zero? r => error "eval: 0 raised to negative power"
(recipr := recip r) case "failed" =>
error "eval: non-unit raised to negative power"
(recipr :: Coef) ** ((-n) :: NNI) *$STTAYLOR eval(uts,r)
zero? n => eval(uts,r)
r ** (n :: NNI) *$STTAYLOR eval(uts,r)
--% values
variable x == variable getUTS x
center x == center getUTS x
coefficient(x,n) ==
a := n - getExpon(x)
a >= 0 => coefficient(getUTS x,a :: NNI)
0
elt(x:%,n:I) == coefficient(x,n)
--% other functions
order x == getExpon x + order getUTS x
order(x,n) ==
(m := n - (e := getExpon x)) < 0 => n
e + order(getUTS x,m :: NNI)
truncate(x,n) ==
(m := n - (e := getExpon x)) < 0 => 0
laurent(e,truncate(getUTS x,m :: NNI))
truncate(x,n1,n2) ==
if n2 < n1 then (n1,n2) := (n2,n1)
(m1 := n1 - (e := getExpon x)) < 0 => truncate(x,n2)
laurent(e,truncate(getUTS x,m1 :: NNI,(n2 - e) :: NNI))
if Coef has IntegralDomain then
rationalFunction(x,n) ==
(m := n - (e := getExpon x)) < 0 => 0
poly := polynomial(getUTS x,m :: NNI) :: RF
zero? e => poly
v := variable(x) :: RF; c := center(x) :: P :: RF
positive? e => poly * (v - c) ** (e :: NNI)
poly / (v - c) ** ((-e) :: NNI)
rationalFunction(x,n1,n2) ==
if n2 < n1 then (n1,n2) := (n2,n1)
(m1 := n1 - (e := getExpon x)) < 0 => rationalFunction(x,n2)
poly := polynomial(getUTS x,m1 :: NNI,(n2 - e) :: NNI) :: RF
zero? e => poly
v := variable(x) :: RF; c := center(x) :: P :: RF
positive? e => poly * (v - c) ** (e :: NNI)
poly / (v - c) ** ((-e) :: NNI)
-- La fonction < exquo > manque dans laurent.spad,
--les lignes suivantes le mettent en evidence :
--
--ls := laurent(0,series [i for i in 1..])$ULS(INT,x,0)
---- missing function in laurent.spad of Axiom 2.0a version of
---- Friday March 10, 1995 at 04:15:22 on 615:
--exquo(ls,ls)
--
-- Je l'ai ajoutee a laurent.spad.
--
--Frederic Lehobey
x exquo y ==
x := removeZeroes(1000,x)
y := removeZeroes(1000,y)
zero? coefficient(y, d := degree y) => "failed"
(uts := (getUTS x) exquo (getUTS y)) case "failed" => "failed"
laurent(degree x-d,uts :: UTS)
if Coef has coerce: Symbol -> Coef then
if Coef has "**": (Coef,I) -> Coef then
approximate(x,n) ==
(m := n - (e := getExpon x)) < 0 => 0
app := approximate(getUTS x,m :: NNI)
zero? e => app
app * ((variable(x) :: Coef) - center(x)) ** e
complete x == laurent(getExpon x,complete getUTS x)
extend(x,n) ==
e := getExpon x
(m := n - e) < 0 => x
laurent(e,extend(getUTS x,m :: NNI))
map(f:Coef -> Coef,x:%) == laurent(getExpon x,map(f,getUTS x))
multiplyCoefficients(f,x) ==
e := getExpon x
laurent(e,multiplyCoefficients(f(e + #1),getUTS x))
multiplyExponents(x,n) ==
laurent(n * getExpon x,multiplyExponents(getUTS x,n))
differentiate x ==
e := getExpon x
laurent(e - 1,multiplyCoefficients((e + #1) :: Coef,getUTS x))
if Coef has PartialDifferentialRing(Symbol) then
differentiate(x:%,s:Symbol) ==
(s = variable(x)) => differentiate x
map(differentiate(#1,s),x) - differentiate(center x,s)*differentiate(x)
characteristic == characteristic$Coef
if Coef has Field then
retract(x:%):UTS == taylor x
retractIfCan(x:%):Union(UTS,"failed") == taylorIfCan x
(x:%) ** (n:I) ==
zero? n =>
zero? x => error "0 ** 0 is undefined"
1
n > 0 => laurent(n * getExpon(x),getUTS(x) ** (n :: NNI))
xInv := inv x; minusN := (-n) :: NNI
laurent(minusN * getExpon(xInv),getUTS(xInv) ** minusN)
(x:UTS) * (y:%) == (x :: %) * y
(x:%) * (y:UTS) == x * (y :: %)
inv x ==
(xInv := recip x) case "failed" =>
error "multiplicative inverse does not exist"
xInv :: %
(x:%) / (y:%) ==
(yInv := recip y) case "failed" =>
error "inv: multiplicative inverse does not exist"
x * (yInv :: %)
(x:UTS) / (y:UTS) == (x :: %) / (y :: %)
numer x ==
(n := degree x) >= 0 => taylor x
x := removeZeroes(-n,x)
(n := degree x) = 0 => taylor x
getUTS x
denom x ==
(n := degree x) >= 0 => 1
x := removeZeroes(-n,x)
(n := degree x) = 0 => 1
monom(1,(-n) :: NNI)
--% algebraic and transcendental functions
if Coef has Algebra Fraction Integer then
coerce(r:RN) == r :: Coef :: %
if Coef has Field then
(x:%) ** (r:RN) == x **$EFULS r
exp x == exp(x)$EFULS
log x == log(x)$EFULS
sin x == sin(x)$EFULS
cos x == cos(x)$EFULS
tan x == tan(x)$EFULS
cot x == cot(x)$EFULS
sec x == sec(x)$EFULS
csc x == csc(x)$EFULS
asin x == asin(x)$EFULS
acos x == acos(x)$EFULS
atan x == atan(x)$EFULS
acot x == acot(x)$EFULS
asec x == asec(x)$EFULS
acsc x == acsc(x)$EFULS
sinh x == sinh(x)$EFULS
cosh x == cosh(x)$EFULS
tanh x == tanh(x)$EFULS
coth x == coth(x)$EFULS
sech x == sech(x)$EFULS
csch x == csch(x)$EFULS
asinh x == asinh(x)$EFULS
acosh x == acosh(x)$EFULS
atanh x == atanh(x)$EFULS
acoth x == acoth(x)$EFULS
asech x == asech(x)$EFULS
acsch x == acsch(x)$EFULS
ratInv: I -> Coef
ratInv n ==
zero? n => 1
inv(n :: RN) :: Coef
integrate x ==
not zero? coefficient(x,-1) =>
error "integrate: series has term of order -1"
e := getExpon x
laurent(e + 1,multiplyCoefficients(ratInv(e + 1 + #1),getUTS x))
if Coef has integrate: (Coef,Symbol) -> Coef and _
Coef has variables: Coef -> List Symbol then
integrate(x:%,s:Symbol) ==
(s = variable(x)) => integrate x
not entry?(s,variables center x) => map(integrate(#1,s),x)
error "integrate: center is a function of variable of integration"
if Coef has TranscendentalFunctionCategory and _
Coef has PrimitiveFunctionCategory and _
Coef has AlgebraicallyClosedFunctionSpace Integer then
integrateWithOneAnswer: (Coef,Symbol) -> Coef
integrateWithOneAnswer(f,s) ==
res := integrate(f,s)$FunctionSpaceIntegration(I,Coef)
res case Coef => res :: Coef
first(res :: List Coef)
integrate(x:%,s:Symbol) ==
(s = variable(x)) => integrate x
not entry?(s,variables center x) =>
map(integrateWithOneAnswer(#1,s),x)
error "integrate: center is a function of variable of integration"
termOutput:(I,Coef,OUT) -> OUT
termOutput(k,c,vv) ==
-- creates a term c * vv ** k
k = 0 => c :: OUT
mon :=
k = 1 => vv
vv ** (k :: OUT)
c = 1 => mon
c = -1 => -mon
(c :: OUT) * mon
showAll?:() -> Boolean
-- check a global Lisp variable
showAll?() == true
termsToOutputForm:(I,ST,OUT) -> OUT
termsToOutputForm(m,uu,xxx) ==
l : L OUT := empty()
empty? uu => (0$Coef) :: OUT
n : NNI ; count : NNI := _$streamCount$Lisp
for n in 0..count while not empty? uu repeat
if frst(uu) ~= 0 then
l := concat(termOutput((n :: I) + m,frst(uu),xxx),l)
uu := rst uu
if showAll?() then
for n in (count + 1).. while explicitEntries? uu and _
not eq?(uu,rst uu) repeat
if frst(uu) ~= 0 then
l := concat(termOutput((n::I) + m,frst(uu),xxx),l)
uu := rst uu
l :=
explicitlyEmpty? uu => l
eq?(uu,rst uu) and frst uu = 0 => l
concat(prefix("O" :: OUT,[xxx ** ((n :: I) + m) :: OUT]),l)
empty? l => (0$Coef) :: OUT
reduce("+",reverse_! l)
coerce(x:%):OUT ==
x := removeZeroes(_$streamCount$Lisp,x)
m := degree x
uts := getUTS x
p := coefficients uts
var := variable uts; cen := center uts
xxx :=
zero? cen => var :: OUT
paren(var :: OUT - cen :: OUT)
termsToOutputForm(m,p,xxx)
@
\section{domain ULS UnivariateLaurentSeries}
<<domain ULS UnivariateLaurentSeries>>=
)abbrev domain ULS UnivariateLaurentSeries
++ Author: Clifton J. Williamson
++ Date Created: 18 January 1990
++ Date Last Updated: 21 September 1993
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: series, Laurent
++ Examples:
++ References:
++ Description: Dense Laurent series in one variable
++ \spadtype{UnivariateLaurentSeries} is a domain representing Laurent
++ series in one variable with coefficients in an arbitrary ring. The
++ parameters of the type specify the coefficient ring, the power series
++ variable, and the center of the power series expansion. For example,
++ \spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in
++ \spad{(x - 3)} with integer coefficients.
UnivariateLaurentSeries(Coef,var,cen): Exports == Implementation where
Coef : Ring
var : Symbol
cen : Coef
I ==> Integer
UTS ==> UnivariateTaylorSeries(Coef,var,cen)
Exports ==> UnivariateLaurentSeriesConstructorCategory(Coef,UTS) with
coerce: Variable(var) -> %
++ \spad{coerce(var)} converts the series variable \spad{var} into a
++ Laurent series.
differentiate: (%,Variable(var)) -> %
++ \spad{differentiate(f(x),x)} returns the derivative of
++ \spad{f(x)} with respect to \spad{x}.
if Coef has Algebra Fraction Integer then
integrate: (%,Variable(var)) -> %
++ \spad{integrate(f(x))} returns an anti-derivative of the power
++ series \spad{f(x)} with constant coefficient 0.
++ We may integrate a series when we can divide coefficients
++ by integers.
Implementation ==> UnivariateLaurentSeriesConstructor(Coef,UTS) add
variable x == var
center x == cen
coerce(v:Variable(var)) ==
zero? cen => monomial(1,1)
monomial(1,1) + monomial(cen,0)
differentiate(x:%,v:Variable(var)) == differentiate x
if Coef has Algebra Fraction Integer then
integrate(x:%,v:Variable(var)) == integrate x
@
\section{package ULS2 UnivariateLaurentSeriesFunctions2}
<<package ULS2 UnivariateLaurentSeriesFunctions2>>=
)abbrev package ULS2 UnivariateLaurentSeriesFunctions2
++ Author: Clifton J. Williamson
++ Date Created: 5 March 1990
++ Date Last Updated: 5 March 1990
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: Laurent series, map
++ Examples:
++ References:
++ Description: Mapping package for univariate Laurent series
++ This package allows one to apply a function to the coefficients of
++ a univariate Laurent series.
UnivariateLaurentSeriesFunctions2(Coef1,Coef2,var1,var2,cen1,cen2):_
Exports == Implementation where
Coef1 : Ring
Coef2 : Ring
var1: Symbol
var2: Symbol
cen1: Coef1
cen2: Coef2
ULS1 ==> UnivariateLaurentSeries(Coef1, var1, cen1)
ULS2 ==> UnivariateLaurentSeries(Coef2, var2, cen2)
UTS1 ==> UnivariateTaylorSeries(Coef1, var1, cen1)
UTS2 ==> UnivariateTaylorSeries(Coef2, var2, cen2)
UTSF2 ==> UnivariateTaylorSeriesFunctions2(Coef1, Coef2, UTS1, UTS2)
Exports ==> with
map: (Coef1 -> Coef2,ULS1) -> ULS2
++ \spad{map(f,g(x))} applies the map f to the coefficients of the Laurent
++ series \spad{g(x)}.
Implementation ==> add
map(f,ups) == laurent(degree ups, map(f, taylorRep ups)$UTSF2)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<category ULSCCAT UnivariateLaurentSeriesConstructorCategory>>
<<domain ULSCONS UnivariateLaurentSeriesConstructor>>
<<domain ULS UnivariateLaurentSeries>>
<<package ULS2 UnivariateLaurentSeriesFunctions2>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|