1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra intpm.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package INTPM PatternMatchIntegration}
<<package INTPM PatternMatchIntegration>>=
)abbrev package INTPM PatternMatchIntegration
++ Author: Manuel Bronstein
++ Date Created: 5 May 1992
++ Date Last Updated: 27 September 1995
++ Description:
++ \spadtype{PatternMatchIntegration} provides functions that use
++ the pattern matcher to find some indefinite and definite integrals
++ involving special functions and found in the litterature.
PatternMatchIntegration(R, F): Exports == Implementation where
R : Join(OrderedSet, RetractableTo Integer, GcdDomain,
LinearlyExplicitRingOver Integer)
F : Join(AlgebraicallyClosedField, TranscendentalFunctionCategory,
FunctionSpace R)
N ==> NonNegativeInteger
Z ==> Integer
SY ==> Symbol
K ==> Kernel F
P ==> SparseMultivariatePolynomial(R, K)
SUP ==> SparseUnivariatePolynomial F
PAT ==> Pattern Z
RES ==> PatternMatchResult(Z, F)
OFE ==> OrderedCompletion F
REC ==> Record(which: Z, exponent: F, coeff: F)
ANS ==> Record(special:F, integrand:F)
NONE ==> 0
EI ==> 1
ERF ==> 2
SI ==> 3
CI ==> 4
GAM2 ==> 5
CI0 ==> 6
Exports ==> with
splitConstant: (F, SY) -> Record(const:F, nconst:F)
++ splitConstant(f, x) returns \spad{[c, g]} such that
++ \spad{f = c * g} and \spad{c} does not involve \spad{t}.
if R has ConvertibleTo Pattern Integer and
R has PatternMatchable Integer then
if F has LiouvillianFunctionCategory then
pmComplexintegrate: (F, SY) -> Union(ANS, "failed")
++ pmComplexintegrate(f, x) returns either "failed" or
++ \spad{[g,h]} such that
++ \spad{integrate(f,x) = g + integrate(h,x)}.
++ It only looks for special complex integrals that pmintegrate
++ does not return.
pmintegrate: (F, SY) -> Union(ANS, "failed")
++ pmintegrate(f, x) returns either "failed" or \spad{[g,h]} such
++ that \spad{integrate(f,x) = g + integrate(h,x)}.
if F has SpecialFunctionCategory then
pmintegrate: (F, SY, OFE, OFE) -> Union(F, "failed")
++ pmintegrate(f, x = a..b) returns the integral of
++ \spad{f(x)dx} from a to b
++ if it can be found by the built-in pattern matching rules.
Implementation ==> add
import PatternMatch(Z, F, F)
import ElementaryFunctionSign(R, F)
import FunctionSpaceAssertions(R, F)
import TrigonometricManipulations(R, F)
import FunctionSpaceAttachPredicates(R, F, F)
mkalist : RES -> AssociationList(SY, F)
pm := new()$SY
pmw := new pm
pmm := new pm
pms := new pm
pmc := new pm
pma := new pm
pmb := new pm
c := optional(pmc::F)
w := suchThat(optional(pmw::F), empty? variables #1)
s := suchThat(optional(pms::F), empty? variables #1 and real? #1)
m := suchThat(optional(pmm::F),
(retractIfCan(#1)@Union(Z,"failed") case Z) and #1 >= 0)
spi := sqrt(pi()$F)
half := 1::F / 2::F
mkalist res == construct destruct res
splitConstant(f, x) ==
not member?(x, variables f) => [f, 1]
(retractIfCan(f)@Union(K, "failed")) case K => [1, f]
(u := isTimes f) case List(F) =>
cc := nc := 1$F
for g in u::List(F) repeat
rec := splitConstant(g, x)
cc := cc * rec.const
nc := nc * rec.nconst
[cc, nc]
(u := isPlus f) case List(F) =>
rec := splitConstant(first(u::List(F)), x)
cc := rec.const
nc := rec.nconst
for g in rest(u::List(F)) repeat
rec := splitConstant(g, x)
if rec.nconst = nc then cc := cc + rec.const
else if rec.nconst = -nc then cc := cc - rec.const
else return [1, f]
[cc, nc]
if (v := isPower f) case Record(val:F, exponent:Z) then
vv := v::Record(val:F, exponent:Z)
(vv.exponent ~= 1) =>
rec := splitConstant(vv.val, x)
return [rec.const ** vv.exponent, rec.nconst ** vv.exponent]
error "splitConstant: should not happen"
if R has ConvertibleTo Pattern Integer and
R has PatternMatchable Integer then
if F has LiouvillianFunctionCategory then
import ElementaryFunctionSign(R, F)
insqrt : F -> F
matchei : (F, SY) -> REC
matcherfei : (F, SY, Boolean) -> REC
matchsici : (F, SY) -> REC
matchli : (F, SY) -> List F
matchli0 : (F, K, SY) -> List F
matchdilog : (F, SY) -> List F
matchdilog0: (F, K, SY, P, F) -> List F
goodlilog? : (K, P) -> Boolean
gooddilog? : (K, P, P) -> Boolean
goodlilog?(k, p) == is?(k, "log"::SY) and one? minimumDegree(p, k)
gooddilog?(k, p, q) ==
is?(k, "log"::SY) and one? degree(p, k) and zero? degree(q, k)
-- matches the integral to a result of the form d * erf(u) or d * ei(u)
-- returns [case, u, d]
matcherfei(f, x, comp?) ==
res0 := new()$RES
pat := c * exp(pma::F)
failed?(res := patternMatch(f, convert(pat)@PAT, res0)) =>
comp? => [NONE, 0,0]
matchei(f,x)
l := mkalist res
da := differentiate(a := l.pma, x)
d := a * (cc := l.pmc) / da
zero? differentiate(d, x) => [EI, a, d]
comp? or (((u := sign a) case Z) and (u::Z) < 0) =>
d := cc * (sa := insqrt(- a)) / da
zero? differentiate(d, x) => [ERF, sa, - d * spi]
[NONE, 0, 0]
[NONE, 0, 0]
-- matches the integral to a result of the form d * ei(k * log u)
-- returns [case, k * log u, d]
matchei(f, x) ==
res0 := new()$RES
a := pma::F
pat := c * a**w / log a
failed?(res := patternMatch(f, convert(pat)@PAT, res0)) =>
[NONE, 0, 0]
l := mkalist res
da := differentiate(a := l.pma, x)
d := (cc := l.pmc) / da
zero? differentiate(d, x) => [EI, (1 + l.pmw) * log a, d]
[NONE, 0, 0]
-- matches the integral to a result of the form d * dilog(u) + int(v),
-- returns [u,d,v] or []
matchdilog(f, x) ==
n := numer f
df := (d := denom f)::F
for k in select_!(gooddilog?(#1, n, d), variables n)$List(K) repeat
not empty?(l := matchdilog0(f, k, x, n, df)) => return l
empty()
-- matches the integral to a result of the form d * dilog(a) + int(v)
-- where k = log(a)
-- returns [a,d,v] or []
matchdilog0(f, k, x, p, q) ==
zero?(da := differentiate(a := first argument k, x)) => empty()
a1 := 1 - a
d := coefficient(univariate(p, k), 1)::F * a1 / (q * da)
zero? differentiate(d, x) => [a, d, f - d * da * (k::F) / a1]
empty()
-- matches the integral to a result of the form d * li(u) + int(v),
-- returns [u,d,v] or []
matchli(f, x) ==
d := denom f
for k in select_!(goodlilog?(#1, d), variables d)$List(K) repeat
not empty?(l := matchli0(f, k, x)) => return l
empty()
-- matches the integral to a result of the form d * li(a) + int(v)
-- where k = log(a)
-- returns [a,d,v] or []
matchli0(f, k, x) ==
g := (lg := k::F) * f
zero?(da := differentiate(a := first argument k, x)) => empty()
zero? differentiate(d := g / da, x) => [a, d, 0]
ug := univariate(g, k)
(u:=retractIfCan(ug)@Union(SUP,"failed")) case "failed" => empty()
degree(p := u::SUP) > 1 => empty()
zero? differentiate(d := coefficient(p, 0) / da, x) =>
[a, d, leadingCoefficient p]
empty()
-- matches the integral to a result of the form d * Si(u) or d * Ci(u)
-- returns [case, u, d]
matchsici(f, x) ==
res0 := new()$RES
b := pmb::F
t := tan(a := pma::F)
patsi := c * t / (patden := b + b * t**2)
patci := (c - c * t**2) / patden
patci0 := c / patden
ci0?:Boolean
(ci? := failed?(res := patternMatch(f, convert(patsi)@PAT, res0)))
and (ci0?:=failed?(res:=patternMatch(f,convert(patci)@PAT,res0)))
and failed?(res := patternMatch(f,convert(patci0)@PAT,res0)) =>
[NONE, 0, 0]
l := mkalist res
(b := l.pmb) ~= 2 * (a := l.pma) => [NONE, 0, 0]
db := differentiate(b, x)
d := (cc := l.pmc) / db
zero? differentiate(d, x) =>
ci? =>
ci0? => [CI0, b, d / (2::F)]
[CI, b, d]
[SI, b, d / (2::F)]
[NONE, 0, 0]
-- returns a simplified sqrt(y)
insqrt y ==
rec := froot(y, 2)$PolynomialRoots(IndexedExponents K, K, R, P, F)
one?(rec.exponent) => rec.coef * rec.radicand
rec.exponent ~=2 => error "insqrt: hould not happen"
rec.coef * sqrt(rec.radicand)
pmintegrate(f, x) ==
(rc := splitConstant(f, x)).const ~= 1 =>
(u := pmintegrate(rc.nconst, x)) case "failed" => "failed"
rec := u::ANS
[rc.const * rec.special, rc.const * rec.integrand]
not empty?(l := matchli(f, x)) => [second l * li first l, third l]
not empty?(l := matchdilog(f, x)) =>
[second l * dilog first l, third l]
cse := (rec := matcherfei(f, x, false)).which
cse = EI => [rec.coeff * Ei(rec.exponent), 0]
cse = ERF => [rec.coeff * erf(rec.exponent), 0]
cse := (rec := matchsici(f, x)).which
cse = SI => [rec.coeff * Si(rec.exponent), 0]
cse = CI => [rec.coeff * Ci(rec.exponent), 0]
cse = CI0 => [rec.coeff * Ci(rec.exponent)
+ rec.coeff * log(rec.exponent), 0]
"failed"
pmComplexintegrate(f, x) ==
(rc := splitConstant(f, x)).const ~= 1 =>
(u := pmintegrate(rc.nconst, x)) case "failed" => "failed"
rec := u::ANS
[rc.const * rec.special, rc.const * rec.integrand]
cse := (rec := matcherfei(f, x, true)).which
cse = ERF => [rec.coeff * erf(rec.exponent), 0]
"failed"
if F has SpecialFunctionCategory then
match1 : (F, SY, F, F) -> List F
formula1 : (F, SY, F, F) -> Union(F, "failed")
-- tries only formula (1) of the Geddes & al, AAECC 1 (1990) paper
formula1(f, x, t, cc) ==
empty?(l := match1(f, x, t, cc)) => "failed"
mw := first l
zero?(ms := third l) or ((sgs := sign ms) case "failed")=> "failed"
((sgz := sign(z := (mw + 1) / ms)) case "failed") or (sgz::Z < 0)
=> "failed"
mmi := retract(mm := second l)@Z
sgs * (last l) * ms**(- mmi - 1) *
eval(differentiate(Gamma(x::F), x, mmi::N), [kernel(x)@K], [z])
-- returns [w, m, s, c] or []
-- matches only formula (1) of the Geddes & al, AAECC 1 (1990) paper
match1(f, x, t, cc) ==
res0 := new()$RES
pat := cc * log(t)**m * exp(-t**s)
not failed?(res := patternMatch(f, convert(pat)@PAT, res0)) =>
l := mkalist res
[0, l.pmm, l.pms, l.pmc]
pat := cc * t**w * exp(-t**s)
not failed?(res := patternMatch(f, convert(pat)@PAT, res0)) =>
l := mkalist res
[l.pmw, 0, l.pms, l.pmc]
pat := cc / t**w * exp(-t**s)
not failed?(res := patternMatch(f, convert(pat)@PAT, res0)) =>
l := mkalist res
[- l.pmw, 0, l.pms, l.pmc]
pat := cc * t**w * log(t)**m * exp(-t**s)
not failed?(res := patternMatch(f, convert(pat)@PAT, res0)) =>
l := mkalist res
[l.pmw, l.pmm, l.pms, l.pmc]
pat := cc / t**w * log(t)**m * exp(-t**s)
not failed?(res := patternMatch(f, convert(pat)@PAT, res0)) =>
l := mkalist res
[- l.pmw, l.pmm, l.pms, l.pmc]
empty()
pmintegrate(f, x, a, b) ==
zero? a and one? whatInfinity b =>
formula1(f, x, constant(x::F), suchThat(c, freeOf?(#1, x)))
"failed"
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
-- SPAD files for the integration world should be compiled in the
-- following order:
--
-- intaux rderf intrf curve curvepkg divisor pfo
-- intalg intaf efstruc rdeef INTPM intef irexpand integrat
<<package INTPM PatternMatchIntegration>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|