aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/intfact.spad.pamphlet
blob: f24922c57195aa8e0c763f890e196fe97d0db974 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra intfact.spad}
\author{Michael Monagan}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package PRIMES IntegerPrimesPackage}
<<package PRIMES IntegerPrimesPackage>>=
)abbrev package PRIMES IntegerPrimesPackage
++ Author: Michael Monagan
++ Date Created: August 1987
++ Date Last Updated: 31 May 1993
++ Updated by: James Davenport
++ Updated Because: of problems with strong pseudo-primes
++   and for some efficiency reasons.
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: integer, prime
++ Examples:
++ References: Davenport's paper in ISSAC 1992
++             AXIOM Technical Report ATR/6
++ Description:
++   The \spadtype{IntegerPrimesPackage} implements a modification of
++   Rabin's probabilistic
++   primality test and the utility functions \spadfun{nextPrime},
++   \spadfun{prevPrime} and \spadfun{primes}.
IntegerPrimesPackage(I:IntegerNumberSystem): with
   prime?: I -> Boolean
     ++ \spad{prime?(n)} returns true if n is prime and false if not.
     ++ The algorithm used is Rabin's probabilistic primality test
     ++ (reference: Knuth Volume 2 Semi Numerical Algorithms).
     ++ If \spad{prime? n} returns false, n is proven composite.
     ++ If \spad{prime? n} returns true, prime? may be in error
     ++ however, the probability of error is very low.
     ++ and is zero below 25*10**9 (due to a result of Pomerance et al),
     ++ below 10**12 and 10**13 due to results of Pinch,
     ++ and below 341550071728321 due to a result of Jaeschke.
     ++ Specifically, this implementation does at least 10 pseudo prime
     ++ tests and so the probability of error is \spad{< 4**(-10)}.
     ++ The running time of this method is cubic in the length
     ++ of the input n, that is \spad{O( (log n)**3 )}, for n<10**20.
     ++ beyond that, the algorithm is quartic, \spad{O( (log n)**4 )}.
     ++ Two improvements due to Davenport have been incorporated
     ++ which catches some trivial strong pseudo-primes, such as
     ++ [Jaeschke, 1991] 1377161253229053 * 413148375987157, which
     ++ the original algorithm regards as prime
   nextPrime: I -> I
     ++ \spad{nextPrime(n)} returns the smallest prime strictly larger than n
   prevPrime: I -> I
     ++ \spad{prevPrime(n)} returns the largest prime strictly smaller than n
   primes: (I,I) -> List I
     ++ \spad{primes(a,b)} returns a list of all primes p with
     ++ \spad{a <= p <= b}
 == add
   smallPrimes: List I := [2::I,3::I,5::I,7::I,11::I,13::I,17::I,19::I,_
                      23::I,29::I,31::I,37::I,41::I,43::I,47::I,_
                      53::I,59::I,61::I,67::I,71::I,73::I,79::I,_
                      83::I,89::I,97::I,101::I,103::I,107::I,109::I,_
                      113::I,127::I,131::I,137::I,139::I,149::I,151::I,_
                      157::I,163::I,167::I,173::I,179::I,181::I,191::I,_
                      193::I,197::I,199::I,211::I,223::I,227::I,229::I,_
                      233::I,239::I,241::I,251::I,257::I,263::I,269::I,_
                      271::I,277::I,281::I,283::I,293::I,307::I,311::I,_
                      313::I]

   productSmallPrimes    := */smallPrimes
   nextSmallPrime        := 317::I
   nextSmallPrimeSquared := nextSmallPrime**2
   two                   := 2::I
   tenPowerTwenty:=(10::I)**20
   PomeranceList:= [25326001::I, 161304001::I, 960946321::I, 1157839381::I,
                     -- 3215031751::I, -- has a factor of 151
                     3697278427::I, 5764643587::I, 6770862367::I,
                      14386156093::I, 15579919981::I, 18459366157::I,
                       19887974881::I, 21276028621::I ]::(List I)
   PomeranceLimit:=27716349961::I  -- replaces (25*10**9) due to Pinch
   PinchList:= [3215031751::I, 118670087467::I, 128282461501::I, 354864744877::I,
                546348519181::I, 602248359169::I, 669094855201::I ]
   PinchLimit:= (10**12)::I
   PinchList2:= [2152302898747::I, 3474749660383::I]
   PinchLimit2:= (10**13)::I
   JaeschkeLimit:=341550071728321::I
   rootsMinus1:Set I := empty()
   -- used to check whether we detect too many roots of -1
   count2Order:Vector NonNegativeInteger := new(1,0)
   -- used to check whether we observe an element of maximal two-order

   primes(m, n) ==
      -- computes primes from m to n inclusive using prime?
      l:List(I) :=
        m <= two => [two]
        empty()
      n < two or n < m => empty()
      if even? m then m := m + 1
      ll:List(I) := [k::I for k in
             convert(m)@Integer..convert(n)@Integer by 2 | prime?(k::I)]
      reverse! concat!(ll, l)

   rabinProvesComposite : (I,I,I,I,NonNegativeInteger) -> Boolean
   rabinProvesCompositeSmall : (I,I,I,I,NonNegativeInteger) -> Boolean


   rabinProvesCompositeSmall(p,n,nm1,q,k) ==
         -- probability n prime is > 3/4 for each iteration
         -- for most n this probability is much greater than 3/4
         t := powmod(p, q, n)
         -- neither of these cases tells us anything
         if not (one? t or t = nm1) then
            for j in 1..k-1 repeat
               oldt := t
               t := mulmod(t, t, n)
               one? t => return true
               -- we have squared someting not -1 and got 1
               t = nm1 =>
                   leave
            not (t = nm1) => return true
         false

   rabinProvesComposite(p,n,nm1,q,k) ==
         -- probability n prime is > 3/4 for each iteration
         -- for most n this probability is much greater than 3/4
         t := powmod(p, q, n)
         -- neither of these cases tells us anything
         if t=nm1 then count2Order(1):=count2Order(1)+1
         if not (one? t or t = nm1) then
            for j in 1..k-1 repeat
               oldt := t
               t := mulmod(t, t, n)
               one? t => return true
               -- we have squared someting not -1 and got 1
               t = nm1 =>
                   rootsMinus1:=union(rootsMinus1,oldt)
                   count2Order(j+1):=count2Order(j+1)+1
                   leave
            not (t = nm1) => return true
         # rootsMinus1 > 2 => true  -- Z/nZ can't be a field
         false

   prime? n ==
      n < two => false
      n < nextSmallPrime => member?(n, smallPrimes)
      not one? gcd(n, productSmallPrimes) => false
      n < nextSmallPrimeSquared => true

      nm1 := n-1
      q := (nm1) quo two
      k : NonNegativeInteger
      for k: free in 1.. while not odd? q repeat q := q quo two
      -- q = (n-1) quo 2**k for largest possible k

      n < JaeschkeLimit =>
          rabinProvesCompositeSmall(2::I,n,nm1,q,k) => return false
          rabinProvesCompositeSmall(3::I,n,nm1,q,k) => return false

          n < PomeranceLimit =>
              rabinProvesCompositeSmall(5::I,n,nm1,q,k) => return false
              member?(n,PomeranceList) => return false
              true

          rabinProvesCompositeSmall(7::I,n,nm1,q,k) => return false
          n < PinchLimit =>
              rabinProvesCompositeSmall(10::I,n,nm1,q,k) => return false
              member?(n,PinchList) => return false
              true

          rabinProvesCompositeSmall(5::I,n,nm1,q,k) => return false
          rabinProvesCompositeSmall(11::I,n,nm1,q,k) => return false
          n < PinchLimit2 =>
              member?(n,PinchList2) => return false
              true

          rabinProvesCompositeSmall(13::I,n,nm1,q,k) => return false
          rabinProvesCompositeSmall(17::I,n,nm1,q,k) => return false
          true

      rootsMinus1:= empty()
      count2Order := new(k,0) -- vector of k zeroes

      mn := minIndex smallPrimes
      for i in mn+1..mn+10 repeat
          rabinProvesComposite(smallPrimes i,n,nm1,q,k) => return false
      import IntegerRoots(I)
      q > 1 and perfectSquare?(3*n+1) => false
      ((n9:=n rem (9::I))=1 or n9 = -1) and perfectSquare?(8*n+1) => false
      -- Both previous tests from Damgard & Landrock
      currPrime:=smallPrimes(mn+10)
      probablySafe:=tenPowerTwenty
      while count2Order(k) = 0 or n > probablySafe repeat
          currPrime := nextPrime currPrime
          probablySafe:=probablySafe*(100::I)
          rabinProvesComposite(currPrime,n,nm1,q,k) => return false
      true

   nextPrime n ==
      -- computes the first prime after n
      n < two => two
      if odd? n then n := n + two else n := n + 1
      while not prime? n repeat n := n + two
      n

   prevPrime n ==
      -- computes the first prime before n
      n < 3::I => error "no primes less than 2"
      n = 3::I => two
      if odd? n then n := n - two else n := n - 1
      while not prime? n repeat n := n - two
      n

@
\section{package IROOT IntegerRoots}
<<package IROOT IntegerRoots>>=
)abbrev package IROOT IntegerRoots
++ Author: Michael Monagan
++ Date Created: November 1987
++ Date Last Updated:
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: integer roots
++ Examples:
++ References:
++ Description: The \spadtype{IntegerRoots} package computes square roots and
++   nth roots of integers efficiently.
IntegerRoots(I:IntegerNumberSystem): Exports == Implementation where
  NNI ==> NonNegativeInteger

  Exports ==> with
    perfectNthPower?: (I, NNI) -> Boolean
      ++ \spad{perfectNthPower?(n,r)} returns true if n is an \spad{r}th
      ++ power and false otherwise
    perfectNthRoot: (I,NNI) -> Union(I,"failed")
      ++ \spad{perfectNthRoot(n,r)} returns the \spad{r}th root of n if n
      ++ is an \spad{r}th power and returns "failed" otherwise
    perfectNthRoot: I -> Record(base:I, exponent:NNI)
      ++ \spad{perfectNthRoot(n)} returns \spad{[x,r]}, where \spad{n = x\^r}
      ++ and r is the largest integer such that n is a perfect \spad{r}th power
    approxNthRoot: (I,NNI) -> I
      ++ \spad{approxRoot(n,r)} returns an approximation x
      ++ to \spad{n**(1/r)} such that \spad{-1 < x - n**(1/r) < 1}
    perfectSquare?: I -> Boolean
      ++ \spad{perfectSquare?(n)} returns true if n is a perfect square
      ++ and false otherwise
    perfectSqrt: I -> Union(I,"failed")
      ++ \spad{perfectSqrt(n)} returns the square root of n if n is a
      ++ perfect square and returns "failed" otherwise
    approxSqrt: I -> I
      ++ \spad{approxSqrt(n)} returns an approximation x
      ++ to \spad{sqrt(n)} such that \spad{-1 < x - sqrt(n) < 1}.
      ++ Compute an approximation s to \spad{sqrt(n)} such that
      ++           \spad{-1 < s - sqrt(n) < 1}
      ++ A variable precision Newton iteration is used.
      ++ The running time is \spad{O( log(n)**2 )}.

  Implementation ==> add
    import IntegerPrimesPackage(I)

    resMod144: List I := [0::I,1::I,4::I,9::I,16::I,25::I,36::I,49::I,_
                     52::I,64::I,73::I,81::I,97::I,100::I,112::I,121::I]
    two := 2::I


    perfectSquare? a       == (perfectSqrt a) case I
    perfectNthPower?(b, n) == perfectNthRoot(b, n) case I

    perfectNthRoot n ==  -- complexity (log log n)**2 (log n)**2
      one? n or zero? n or n = -1 => [n, 1]
      e:NNI := 1
      p:NNI := 2
      while p::I <= length(n) + 1 repeat
         m: NNI := 0
         while (r := perfectNthRoot(n, p)) case I repeat
            n := r::I
            m := m + 1
         e := e * p ** m
         p := convert(nextPrime(p::I))@Integer :: NNI
      [n, e]

    approxNthRoot(a, n) ==   -- complexity (log log n) (log n)**2
      zero? n => error "invalid arguments"
      one? n => a
      n=2 => approxSqrt a
      negative? a =>
        odd? n => - approxNthRoot(-a, n)
        0
      zero? a => 0
      one? a => 1
      -- quick check for case of large n
      ((3*n) quo 2)::I >= (l := length a) => two
      -- the initial approximation must be >= the root
      y := max(two, shift(1, (n::I+l-1) quo (n::I)))
      z:I := 1
      n1:= (n-1)::NNI
      x: I
      while positive? z repeat
        x := y
        xn:= x**n1
        y := (n1*x*xn+a) quo (n*xn)
        z := x-y
      x

    perfectNthRoot(b, n) ==
      (r := approxNthRoot(b, n)) ** n = b => r
      "failed"

    perfectSqrt a ==
      negative? a or not member?(a rem (144::I), resMod144) => "failed"
      (s := approxSqrt a) * s = a => s
      "failed"

    approxSqrt a ==
      a < 1 => 0
      if (n := length a) > (100::I) then
         -- variable precision newton iteration
         n := n quo (4::I)
         s := approxSqrt shift(a, -2 * n)
         s := shift(s, n)
         return ((1 + s + a quo s) quo two)
      -- initial approximation for the root is within a factor of 2
      old: I := 1
      new: I := shift(1, n quo two)
      while new ~= old repeat
         (new, old) := ((1 + new + a quo new) quo two, new)
      new

@
\section{package INTFACT IntegerFactorizationPackage}
<<package INTFACT IntegerFactorizationPackage>>=
)abbrev package INTFACT IntegerFactorizationPackage
++ This Package contains basic methods for integer factorization.
++ The factor operation employs trial division up to 10,000.  It
++ then tests to see if n is a perfect power before using Pollards
++ rho method.  Because Pollards method may fail, the result
++ of factor may contain composite factors.  We should also employ
++ Lenstra's eliptic curve method.

IntegerFactorizationPackage(I): Exports == Implementation where
  I: IntegerNumberSystem

  B      ==> Boolean
  FF     ==> Factored I
  NNI    ==> NonNegativeInteger
  LMI    ==> ListMultiDictionary I
  FFE    ==> Record(flg:Union("nil","sqfr","irred","prime"),
                                                   fctr:I, xpnt:Integer)

  Exports ==>  with
    factor : I -> FF
      ++ factor(n) returns the full factorization of integer n
    squareFree   : I -> FF
      ++ squareFree(n) returns the square free factorization of integer n
    BasicMethod : I -> FF
      ++ BasicMethod(n) returns the factorization
      ++ of integer n by trial division
    PollardSmallFactor: I -> Union(I,"failed")
       ++ PollardSmallFactor(n) returns a factor
       ++ of n or "failed" if no one is found

  Implementation ==> add
    import IntegerRoots(I)

    BasicSieve: (I, I) -> FF

    squareFree(n:I):FF ==
       u:I
       if negative? n then (m := -n; u := -1)
              else (m := n; u := 1)
       (m > 1) and ((v := perfectSqrt m) case I) =>
          sv : FF
          l : List FFE
          for rec in (l := factorList(sv := squareFree(v::I))) repeat
            rec.xpnt := 2 * rec.xpnt
          makeFR(u * unit sv, l)
    -- avoid using basic sieve when the lim is too big
       lim := 1 + approxNthRoot(m,3)
       lim > (100000::I) => makeFR(u, factorList factor m)
       x := BasicSieve(m, lim)
       y :=
         one?(m:= unit x) => factorList x
         (v := perfectSqrt m) case I => 
            concat!(factorList x, ["sqfr",v,2]$FFE)
         concat!(factorList x, ["sqfr",m,1]$FFE)
       makeFR(u, y)

    -- Pfun(y: I,n: I): I == (y**2 + 5) rem n
    PollardSmallFactor(n:I):Union(I,"failed") ==
       -- Use the Brent variation
       x0 := random()$I
       m := 100::I
       y := x0 rem n
       r:I := 1
       q:I := 1
       G:I := 1
       ys: I
       x: I
       l: I
       k: I
       until G > 1 repeat
          x := y
          ys := y
          for i in 1..convert(r)@Integer repeat
             y := (y*y+5::I) rem n
             q := (q*abs(x-y)) rem n
          k := 0::I
          G := gcd(q,n)
          until (k>=r) or (G>1) repeat
             ys := y
             for i in 1..convert(min(m,r-k))@Integer repeat
                y := (y*y+5::I) rem n
                q := (q*abs(x-y)) rem n
             G := gcd(q,n)
             k := k+m
          k := k + r
          r := 2*r
       if G=n then
          l := k - m
          G := 1::I
          until G>1 repeat
             ys := (ys*ys+5::I) rem n
             G := gcd(abs(x-ys),n)
             l := l + 1
          if G = n then
            y := x0
            x := x0
            for i in 1..convert(l)@Integer repeat
              y := (y*y + 5::I) rem n
            G := gcd(abs(x-y),n)
            until G > 1 repeat
              y := (y*y + 5::I) rem n
              x := (x*x + 5::I) rem n
              G := gcd(abs(x-y),n)
       G=n => "failed"
       G

    PollardSmallFactor20(n: I): Union(I,"failed") ==
      r: Union(I,"failed")
      for i in 1..20 repeat
        r := PollardSmallFactor n
        r case I => return r
      r

    BasicSieve(r, lim) ==
       l:List(I) :=
          [1::I,2::I,2::I,4::I,2::I,4::I,2::I,4::I,6::I,2::I,6::I]
       concat!(l, rest(l, 3))
       d := 2::I
       n := r
       ls := empty()$List(FFE)
       for s in l repeat
          d > lim => return makeFR(n, ls)
          if n<d*d then
             if n>1 then ls := concat!(ls, ["prime",n,1]$FFE)
             return makeFR(1, ls)
          m : Integer
          for m: free in 0.. while zero?(n rem d) repeat n := n quo d
          if positive? m then ls := concat!(ls, ["prime",d,convert m]$FFE)
          d := d+s

    BasicMethod n ==
       u:I
       if negative? n then (m := -n; u := -1)
              else (m := n; u := 1)
       x := BasicSieve(m, 1 + approxSqrt m)
       makeFR(u, factorList x)

    factor m ==
       u:I
       zero? m => 0
       if negative? m then (n := -m; u := -1)
                      else (n := m; u := 1)
       b := BasicSieve(n, 10000::I)
       flb := factorList b
       one?(n := unit b) => makeFR(u, flb)
       a:LMI := dictionary() -- numbers yet to be factored
       b:LMI := dictionary() -- prime factors found
       f:LMI := dictionary() -- number which could not be factored
       insert!(n, a)
       while not empty? a repeat
          n := inspect a; 
          c := count(n, a); 
          remove!(n, a)
          prime?(n)$IntegerPrimesPackage(I) => insert!(n, b, c)
          -- test for a perfect power
          (s := perfectNthRoot n).exponent > 1 =>
            insert!(s.base, a, c * s.exponent)
          -- test for a difference of square
          x:=approxSqrt n;
          if (x**2<n) then x:=x+1
          (y:=perfectSqrt (x**2-n)) case I =>
                insert!(x+y,a,c)
                insert!(x-y,a,c)
          (d := PollardSmallFactor20 n) case I =>
             m' : NonNegativeInteger
             for m': free in 0.. while zero?(n rem d) repeat n := n quo d
             insert!(d, a, m' * c)
             if n > 1 then insert!(n, a, c)
          -- an elliptic curve factorization attempt should be made here
          insert!(n, f, c)
       -- insert prime factors found
       while not empty? b repeat
          n := inspect b; c := count(n, b); remove!(n, b)
          flb := concat!(flb, ["prime",n,convert c]$FFE)
       -- insert non-prime factors found
       while not empty? f repeat
          n := inspect f; c := count(n, f); remove!(n, f)
          flb := concat!(flb, ["nil",n,convert c]$FFE)
       makeFR(u, flb)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package PRIMES IntegerPrimesPackage>>
<<package IROOT IntegerRoots>>
<<package INTFACT IntegerFactorizationPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}