1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra integrat.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package FSCINT FunctionSpaceComplexIntegration}
<<package FSCINT FunctionSpaceComplexIntegration>>=
)abbrev package FSCINT FunctionSpaceComplexIntegration
++ Top-level complex function integration
++ Author: Manuel Bronstein
++ Date Created: 4 February 1988
++ Date Last Updated: 11 June 1993
++ Description:
++ \spadtype{FunctionSpaceComplexIntegration} provides functions for the
++ indefinite integration of complex-valued functions.
++ Keywords: function, integration.
FunctionSpaceComplexIntegration(R, F): Exports == Implementation where
R : Join(EuclideanDomain, OrderedSet, CharacteristicZero,
RetractableTo Integer, LinearlyExplicitRingOver Integer)
F : Join(TranscendentalFunctionCategory,
AlgebraicallyClosedFunctionSpace R)
SE ==> Symbol
G ==> Complex R
FG ==> Expression G
IR ==> IntegrationResult F
Exports ==> with
internalIntegrate : (F, SE) -> IR
++ internalIntegrate(f, x) returns the integral of \spad{f(x)dx}
++ where x is viewed as a complex variable.
internalIntegrate0: (F, SE) -> IR
++ internalIntegrate0 should be a local function, but is conditional.
complexIntegrate : (F, SE) -> F
++ complexIntegrate(f, x) returns the integral of \spad{f(x)dx}
++ where x is viewed as a complex variable.
Implementation ==> add
import IntegrationTools(R, F)
import ElementaryIntegration(R, F)
import ElementaryIntegration(G, FG)
import AlgebraicManipulations(R, F)
import AlgebraicManipulations(G, FG)
import TrigonometricManipulations(R, F)
import IntegrationResultToFunction(R, F)
import IntegrationResultFunctions2(FG, F)
import ElementaryFunctionStructurePackage(R, F)
import ElementaryFunctionStructurePackage(G, FG)
import InnerTrigonometricManipulations(R, F, FG)
K2KG: Kernel F -> Kernel FG
K2KG k == retract(tan F2FG first argument k)@Kernel(FG)
complexIntegrate(f, x) ==
removeConstantTerm(complexExpand internalIntegrate(f, x), x)
if R has Join(ConvertibleTo Pattern Integer, PatternMatchable Integer)
and F has Join(LiouvillianFunctionCategory, RetractableTo SE) then
import PatternMatchIntegration(R, F)
internalIntegrate0(f, x) ==
intPatternMatch(f, x, lfintegrate, pmComplexintegrate)
else internalIntegrate0(f, x) == lfintegrate(f, x)
internalIntegrate(f, x) ==
f := distribute(f, x::F)
g : F
any?(has?(operator #1, "rtrig"),
[k for k in tower(g := realElementary(f, x))
| member?(x, variables(k::F))]$List(Kernel F))$List(Kernel F) =>
h := trigs2explogs(F2FG g, [K2KG k for k in tower f
| is?(k, "tan"::SE) or is?(k, "cot"::SE)], [x])
real?(g := FG2F h) =>
internalIntegrate0(rootSimp(rischNormalize(g, x).func), x)
real?(g := FG2F(h := rootSimp(rischNormalize(h, x).func))) =>
internalIntegrate0(g, x)
map(FG2F, lfintegrate(h, x))
internalIntegrate0(rootSimp(rischNormalize(g, x).func), x)
@
\section{package FSINT FunctionSpaceIntegration}
<<package FSINT FunctionSpaceIntegration>>=
)abbrev package FSINT FunctionSpaceIntegration
++ Top-level real function integration
++ Author: Manuel Bronstein
++ Date Created: 4 February 1988
++ Date Last Updated: 11 June 1993
++ Keywords: function, integration.
++ Description:
++ \spadtype{FunctionSpaceIntegration} provides functions for the
++ indefinite integration of real-valued functions.
++ Examples: )r INTEF INPUT
FunctionSpaceIntegration(R, F): Exports == Implementation where
R : Join(EuclideanDomain, OrderedSet, CharacteristicZero,
RetractableTo Integer, LinearlyExplicitRingOver Integer)
F : Join(TranscendentalFunctionCategory, PrimitiveFunctionCategory,
AlgebraicallyClosedFunctionSpace R)
B ==> Boolean
G ==> Complex R
K ==> Kernel F
P ==> SparseMultivariatePolynomial(R, K)
SE ==> Symbol
IR ==> IntegrationResult F
FG ==> Expression G
ALGOP ==> "%alg"
TANTEMP ==> "%temptan"::SE
Exports ==> with
integrate: (F, SE) -> Union(F, List F)
++ integrate(f, x) returns the integral of \spad{f(x)dx}
++ where x is viewed as a real variable.
Implementation ==> add
import IntegrationTools(R, F)
import ElementaryIntegration(R, F)
import ElementaryIntegration(G, FG)
import AlgebraicManipulations(R, F)
import TrigonometricManipulations(R, F)
import IntegrationResultToFunction(R, F)
import TranscendentalManipulations(R, F)
import IntegrationResultFunctions2(FG, F)
import FunctionSpaceComplexIntegration(R, F)
import ElementaryFunctionStructurePackage(R, F)
import InnerTrigonometricManipulations(R, F, FG)
import PolynomialCategoryQuotientFunctions(IndexedExponents K,
K, R, SparseMultivariatePolynomial(R, K), F)
K2KG : K -> Kernel FG
postSubst : (F, List F, List K, B, List K, SE) -> F
rinteg : (IR, F, SE, B, B) -> Union(F, List F)
mkPrimh : (F, SE, B, B) -> F
trans? : F -> B
goComplex?: (B, List K, List K) -> B
halfangle : F -> F
Khalf : K -> F
tan2temp : K -> K
optemp:BasicOperator := operator(TANTEMP, 1)
K2KG k == retract(tan F2FG first argument k)@Kernel(FG)
tan2temp k == kernel(optemp, argument k, height k)$K
trans? f ==
any?(is?(#1,"log"::SE) or is?(#1,"exp"::SE) or is?(#1,"atan"::SE),
operators f)$List(BasicOperator)
mkPrimh(f, x, h, comp) ==
f := real f
if comp then f := removeSinSq f
g := mkPrim(f, x)
h and trans? g => htrigs g
g
rinteg(i, f, x, h, comp) ==
not elem? i => integral(f, x)$F
empty? rest(l := [mkPrimh(f, x, h, comp) for f in expand i]) => first l
l
-- replace tan(a/2)**2 by (1-cos a)/(1+cos a) if tan(a/2) is in ltan
halfangle a ==
a := 2 * a
(1 - cos a) / (1 + cos a)
Khalf k ==
a := 2 * first argument k
sin(a) / (1 + cos a)
-- ltan = list of tangents in the integrand after real normalization
postSubst(f, lv, lk, comp, ltan, x) ==
for v in lv for k in lk repeat
if ((u := retractIfCan(v)@Union(K, "failed")) case K) then
if has?(operator(kk := u::K), ALGOP) then
f := univariate(f, kk, minPoly kk) (kk::F)
f := eval(f, [u::K], [k::F])
if not(comp or empty? ltan) then
ltemp := [tan2temp k for k in ltan]
f := eval(f, ltan, [k::F for k in ltemp])
f := eval(f, TANTEMP, 2, halfangle)
f := eval(f, ltemp, [Khalf k for k in ltemp])
removeConstantTerm(f, x)
-- can handle a single unnested tangent directly, otherwise go complex for now
-- l is the list of all the kernels containing x
-- ltan is the list of all the tangents in l
goComplex?(rt, l, ltan) ==
empty? ltan => rt
not empty? rest rest l
integrate(f, x) ==
R has complex or not real? f => complexIntegrate(f, x)
f := distribute(f, x::F)
tf := [k for k in tower f | member?(x, variables(k::F)@List(SE))]$List(K)
ltf := select(is?(operator #1, "tan"::SE), tf)
ht := any?(has?(operator #1, "htrig"), tf)
rec := rischNormalize(realElementary(f, x), x)
g := rootSimp(rec.func)
tg := [k for k in tower g | member?(x, variables(k::F))]$List(K)
ltg := select(is?(operator #1, "tan"::SE), tg)
rtg := any?(has?(operator #1, "rtrig"), tg)
el := any?(has?(operator #1, "elem"), tg)
i:IR
if (comp := goComplex?(rtg, tg, ltg)) then
i := map(FG2F, lfintegrate(trigs2explogs(F2FG g,
[K2KG k for k in tf | is?(k, "tan"::SE) or
is?(k, "cot"::SE)], [x]), x))
else i := lfintegrate(g, x)
ltg := setDifference(ltg, ltf) -- tan's added by normalization
(u := rinteg(i, f, x, el and ht, comp)) case F =>
postSubst(u::F, rec.vals, rec.kers, comp, ltg, x)
[postSubst(h, rec.vals, rec.kers, comp, ltg, x) for h in u::List(F)]
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
-- SPAD files for the integration world should be compiled in the
-- following order:
--
-- intaux rderf intrf curve curvepkg divisor pfo
-- intalg intaf EFSTRUC rdeef intef irexpand integrat
<<package FSCINT FunctionSpaceComplexIntegration>>
<<package FSINT FunctionSpaceIntegration>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|