aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/infprod.spad.pamphlet
blob: ac34c2ea1cd2ec8bca07b80175c7b1b17746f2b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra infprod.spad}
\author{Clifton J. Williamson}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package STINPROD StreamInfiniteProduct}
<<package STINPROD StreamInfiniteProduct>>=
)abbrev package STINPROD StreamInfiniteProduct
++ Author: Clifton J. Williamson
++ Date Created: 23 February 1990
++ Date Last Updated: 23 February 1990
++ Basic Operations: infiniteProduct, evenInfiniteProduct, oddInfiniteProduct,
++   generalInfiniteProduct
++ Related Domains: UnivariateTaylorSeriesCategory
++ Also See:
++ AMS Classifications:
++ Keywords: Taylor series, infinite product
++ Examples:
++ References:
++ Description: 
++   This package computes infinite products of Taylor series over an
++   integral domain of characteristic 0.  Here Taylor series are
++   represented by streams of Taylor coefficients.
StreamInfiniteProduct(Coef): Exports == Implementation where
  Coef: Join(IntegralDomain,CharacteristicZero)
  I  ==> Integer
  QF ==> Fraction
  ST ==> Stream
 
  Exports ==> with
 
    infiniteProduct: ST Coef -> ST Coef
      ++ infiniteProduct(f(x)) computes \spad{product(n=1,2,3...,f(x**n))}.
      ++ The series \spad{f(x)} should have constant coefficient 1.
    evenInfiniteProduct: ST Coef -> ST Coef
      ++ evenInfiniteProduct(f(x)) computes \spad{product(n=2,4,6...,f(x**n))}.
      ++ The series \spad{f(x)} should have constant coefficient 1.
    oddInfiniteProduct: ST Coef -> ST Coef
      ++ oddInfiniteProduct(f(x)) computes \spad{product(n=1,3,5...,f(x**n))}.
      ++ The series \spad{f(x)} should have constant coefficient 1.
    generalInfiniteProduct: (ST Coef,I,I) -> ST Coef
      ++ generalInfiniteProduct(f(x),a,d) computes
      ++ \spad{product(n=a,a+d,a+2*d,...,f(x**n))}.
      ++ The series \spad{f(x)} should have constant coefficient 1.
 
  Implementation ==> add
 
    if Coef has Field then
 
      import StreamTaylorSeriesOperations(Coef)
      import StreamTranscendentalFunctions(Coef)
 
      infiniteProduct st             == exp lambert log st
      evenInfiniteProduct st         == exp evenlambert log st
      oddInfiniteProduct st          == exp oddlambert log st
      generalInfiniteProduct(st,a,d) == exp generalLambert(log st,a,d)
 
    else
 
      import StreamTaylorSeriesOperations(QF Coef)
      import StreamTranscendentalFunctions(QF Coef)
 
      applyOverQF:(ST QF Coef -> ST QF Coef,ST Coef) -> ST Coef
      applyOverQF(f,st) ==
        stQF := map(#1 :: QF(Coef),st)$StreamFunctions2(Coef,QF Coef)
        map(retract(#1)@Coef,f stQF)$StreamFunctions2(QF Coef,Coef)
 
      infiniteProduct st     == applyOverQF(exp lambert log #1,st)
      evenInfiniteProduct st == applyOverQF(exp evenlambert log #1,st)
      oddInfiniteProduct st  == applyOverQF(exp oddlambert log #1,st)
      generalInfiniteProduct(st,a,d) ==
        applyOverQF(exp generalLambert(log #1,a,d),st)

@
\section{package INFPROD0 InfiniteProductCharacteristicZero}
<<package INFPROD0 InfiniteProductCharacteristicZero>>=
)abbrev package INFPROD0 InfiniteProductCharacteristicZero
++ Author: Clifton J. Williamson
++ Date Created: 22 February 1990
++ Date Last Updated: 23 February 1990
++ Basic Operations: infiniteProduct, evenInfiniteProduct, oddInfiniteProduct,
++   generalInfiniteProduct
++ Related Domains: UnivariateTaylorSeriesCategory
++ Also See:
++ AMS Classifications:
++ Keywords: Taylor series, infinite product
++ Examples:
++ References:
++ Description: 
++   This package computes infinite products of univariate Taylor series
++   over an integral domain of characteristic 0.
InfiniteProductCharacteristicZero(Coef,UTS):_
 Exports == Implementation where
  Coef : Join(IntegralDomain,CharacteristicZero)
  UTS  : UnivariateTaylorSeriesCategory Coef
  I  ==> Integer
 
  Exports ==> with
 
    infiniteProduct: UTS -> UTS
      ++ infiniteProduct(f(x)) computes \spad{product(n=1,2,3...,f(x**n))}.
      ++ The series \spad{f(x)} should have constant coefficient 1.
    evenInfiniteProduct: UTS -> UTS
      ++ evenInfiniteProduct(f(x)) computes \spad{product(n=2,4,6...,f(x**n))}.
      ++ The series \spad{f(x)} should have constant coefficient 1.
    oddInfiniteProduct: UTS -> UTS
      ++ oddInfiniteProduct(f(x)) computes \spad{product(n=1,3,5...,f(x**n))}.
      ++ The series \spad{f(x)} should have constant coefficient 1.
    generalInfiniteProduct: (UTS,I,I) -> UTS
      ++ generalInfiniteProduct(f(x),a,d) computes
      ++ \spad{product(n=a,a+d,a+2*d,...,f(x**n))}.
      ++ The series \spad{f(x)} should have constant coefficient 1.
 
  Implementation ==> add
 
    import StreamInfiniteProduct Coef
 
    infiniteProduct x     == series infiniteProduct coefficients x
    evenInfiniteProduct x == series evenInfiniteProduct coefficients x
    oddInfiniteProduct x  == series oddInfiniteProduct coefficients x
 
    generalInfiniteProduct(x,a,d) ==
      series generalInfiniteProduct(coefficients x,a,d)

@
\section{package INPRODPF InfiniteProductPrimeField}
<<package INPRODPF InfiniteProductPrimeField>>=
)abbrev package INPRODPF InfiniteProductPrimeField
++ Author: Clifton J. Williamson
++ Date Created: 22 February 1990
++ Date Last Updated: 23 February 1990
++ Basic Operations: infiniteProduct, evenInfiniteProduct, oddInfiniteProduct,
++   generalInfiniteProduct
++ Related Domains: UnivariateTaylorSeriesCategory
++ Also See:
++ AMS Classifications:
++ Keywords: Taylor series, infinite product
++ Examples:
++ References:
++ Description: 
++    This package computes infinite products of univariate Taylor series
++    over a field of prime order.
InfiniteProductPrimeField(Coef,UTS): Exports == Implementation where
  Coef : Join(Field,Finite,ConvertibleTo Integer)
  UTS  : UnivariateTaylorSeriesCategory Coef
  I  ==> Integer
  ST ==> Stream
 
  Exports ==> with
 
    infiniteProduct: UTS -> UTS
      ++ infiniteProduct(f(x)) computes \spad{product(n=1,2,3...,f(x**n))}.
      ++ The series \spad{f(x)} should have constant coefficient 1.
    evenInfiniteProduct: UTS -> UTS
      ++ evenInfiniteProduct(f(x)) computes \spad{product(n=2,4,6...,f(x**n))}.
      ++ The series \spad{f(x)} should have constant coefficient 1.
    oddInfiniteProduct: UTS -> UTS
      ++ oddInfiniteProduct(f(x)) computes \spad{product(n=1,3,5...,f(x**n))}.
      ++ The series \spad{f(x)} should have constant coefficient 1.
    generalInfiniteProduct: (UTS,I,I) -> UTS
      ++ generalInfiniteProduct(f(x),a,d) computes
      ++ \spad{product(n=a,a+d,a+2*d,...,f(x**n))}.
      ++ The series \spad{f(x)} should have constant coefficient 1.
 
  Implementation ==> add
 
    import StreamInfiniteProduct Integer
 
    applyOverZ:(ST I -> ST I,ST Coef) -> ST Coef
    applyOverZ(f,st) ==
      stZ := map(convert(#1)@Integer,st)$StreamFunctions2(Coef,I)
      map(#1 :: Coef,f stZ)$StreamFunctions2(I,Coef)
 
    infiniteProduct x ==
      series applyOverZ(infiniteProduct,coefficients x)
    evenInfiniteProduct x ==
      series applyOverZ(evenInfiniteProduct,coefficients x)
    oddInfiniteProduct x ==
      series applyOverZ(oddInfiniteProduct,coefficients x)
    generalInfiniteProduct(x,a,d) ==
      series applyOverZ(generalInfiniteProduct(#1,a,d),coefficients x)

@
\section{package INPRODFF InfiniteProductFiniteField}
<<package INPRODFF InfiniteProductFiniteField>>=
)abbrev package INPRODFF InfiniteProductFiniteField
++ Author: Clifton J. Williamson
++ Date Created: 22 February 1990
++ Date Last Updated: 23 February 1990
++ Basic Operations: infiniteProduct, evenInfiniteProduct, oddInfiniteProduct,
++   generalInfiniteProduct
++ Related Domains: UnivariateTaylorSeriesCategory
++ Also See:
++ AMS Classifications:
++ Keywords: Taylor series, infinite product
++ Examples:
++ References:
++ Description: 
++   This package computes infinite products of univariate Taylor series
++   over an arbitrary finite field.
InfiniteProductFiniteField(K,UP,Coef,UTS):_
 Exports == Implementation where
  K    :  Join(Field,Finite,ConvertibleTo Integer)
  UP   :  UnivariatePolynomialCategory K
  Coef :  MonogenicAlgebra(K,UP)
  UTS  :  UnivariateTaylorSeriesCategory Coef
  I   ==> Integer
  RN  ==> Fraction Integer
  SAE ==> SimpleAlgebraicExtension
  ST  ==> Stream
  STF ==> StreamTranscendentalFunctions
  STT ==> StreamTaylorSeriesOperations
  ST2 ==> StreamFunctions2
  SUP ==> SparseUnivariatePolynomial
 
  Exports ==> with
 
    infiniteProduct: UTS -> UTS
      ++ infiniteProduct(f(x)) computes \spad{product(n=1,2,3...,f(x**n))}.
      ++ The series \spad{f(x)} should have constant coefficient 1.
    evenInfiniteProduct: UTS -> UTS
      ++ evenInfiniteProduct(f(x)) computes \spad{product(n=2,4,6...,f(x**n))}.
      ++ The series \spad{f(x)} should have constant coefficient 1.
    oddInfiniteProduct: UTS -> UTS
      ++ oddInfiniteProduct(f(x)) computes \spad{product(n=1,3,5...,f(x**n))}.
      ++ The series \spad{f(x)} should have constant coefficient 1.
    generalInfiniteProduct: (UTS,I,I) -> UTS
      ++ generalInfiniteProduct(f(x),a,d) computes
      ++ \spad{product(n=a,a+d,a+2*d,...,f(x**n))}.
      ++ The series \spad{f(x)} should have constant coefficient 1.
 
  Implementation ==> add
 
    liftPoly: UP -> SUP RN
    liftPoly poly ==
      -- lift coefficients of 'poly' to integers
      ans : SUP RN := 0
      while not zero? poly repeat
        coef := convert(leadingCoefficient poly)@I :: RN
        ans := ans + monomial(coef,degree poly)
        poly := reductum poly
      ans
 
    reducePoly: SUP RN -> UP
    reducePoly poly ==
      -- reduce coefficients of 'poly' to elements of K
      ans : UP := 0
      while not zero? poly repeat
        coef := numer(leadingCoefficient(poly)) :: K
        ans := ans + monomial(coef,degree poly)
        poly := reductum poly
      ans
 
    POLY := liftPoly definingPolynomial()$Coef
    ALG  := SAE(RN,SUP RN,POLY)
 
    infiniteProduct x ==
      stUP := map(lift,coefficients x)$ST2(Coef,UP)
      stSUP := map(liftPoly,stUP)$ST2(UP,SUP RN)
      stALG := map(reduce,stSUP)$ST2(SUP RN,ALG)
      stALG := exp(lambert(log(stALG)$STF(ALG))$STT(ALG))$STF(ALG)
      stSUP := map(lift,stALG)$ST2(ALG,SUP RN)
      stUP := map(reducePoly,stSUP)$ST2(SUP RN,UP)
      series map(reduce,stUP)$ST2(UP,Coef)
 
    evenInfiniteProduct x ==
      stUP := map(lift,coefficients x)$ST2(Coef,UP)
      stSUP := map(liftPoly,stUP)$ST2(UP,SUP RN)
      stALG := map(reduce,stSUP)$ST2(SUP RN,ALG)
      stALG := exp(evenlambert(log(stALG)$STF(ALG))$STT(ALG))$STF(ALG)
      stSUP := map(lift,stALG)$ST2(ALG,SUP RN)
      stUP := map(reducePoly,stSUP)$ST2(SUP RN,UP)
      series map(reduce,stUP)$ST2(UP,Coef)
 
    oddInfiniteProduct x ==
      stUP := map(lift,coefficients x)$ST2(Coef,UP)
      stSUP := map(liftPoly,stUP)$ST2(UP,SUP RN)
      stALG := map(reduce,stSUP)$ST2(SUP RN,ALG)
      stALG := exp(oddlambert(log(stALG)$STF(ALG))$STT(ALG))$STF(ALG)
      stSUP := map(lift,stALG)$ST2(ALG,SUP RN)
      stUP := map(reducePoly,stSUP)$ST2(SUP RN,UP)
      series map(reduce,stUP)$ST2(UP,Coef)
 
    generalInfiniteProduct(x,a,d) ==
      stUP := map(lift,coefficients x)$ST2(Coef,UP)
      stSUP := map(liftPoly,stUP)$ST2(UP,SUP RN)
      stALG := map(reduce,stSUP)$ST2(SUP RN,ALG)
      stALG := generalLambert(log(stALG)$STF(ALG),a,d)$STT(ALG)
      stALG := exp(stALG)$STF(ALG)
      stSUP := map(lift,stALG)$ST2(ALG,SUP RN)
      stUP := map(reducePoly,stSUP)$ST2(SUP RN,UP)
      series map(reduce,stUP)$ST2(UP,Coef)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
 
<<package STINPROD StreamInfiniteProduct>>
<<package INFPROD0 InfiniteProductCharacteristicZero>>
<<package INPRODPF InfiniteProductPrimeField>>
<<package INPRODFF InfiniteProductFiniteField>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}