1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra gpgcd.spad}
\author{The Axiom Team}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package GENPGCD GeneralPolynomialGcdPackage}
<<package GENPGCD GeneralPolynomialGcdPackage>>=
)abbrev package GENPGCD GeneralPolynomialGcdPackage
++ Description:
++ This package provides operations for GCD computations
++ on polynomials
GeneralPolynomialGcdPackage(E,OV,R,P):C == T where
R : PolynomialFactorizationExplicit
P : PolynomialCategory(R,E,OV)
OV : OrderedSet
E : OrderedAbelianMonoidSup
SUPP ==> SparseUnivariatePolynomial P
--JHD ContPrim ==> Record(cont:P,prim:P)
C == with
gcdPolynomial : (SUPP,SUPP) -> SUPP
++ gcdPolynomial(p,q) returns the GCD of p and q
randomR : () ->R
++ randomR() should be local but conditional
--JHD gcd : (P,P) -> P
--JHD gcd : List P -> P
--JHD gcdprim : (P,P) -> P
--JHD gcdprim : List P -> P
--JHD gcdcofact : List P -> List P
--JHD gcdcofactprim : List P -> List P
--JHD primitate : (P,OV) -> P
--JHD primitate : SUPP -> SUPP
--JHD content : P -> P
--JHD content : List P -> List P
--JHD contprim : List P -> List ContPrim
--JHD monomContent : (P,OV) -> P
--JHD monomContent : SUPP -> SUPP
T == add
SUPR ==> SparseUnivariatePolynomial R
--JHD SUPLGcd ==> Record(locgcd:SUPP,goodint:List R)
--JHD LGcd ==> Record(locgcd:P,goodint:List R)
--JHD UTerm ==> Record(lpol:List SUPR,lint:List R,mpol:P)
--JHD--JHD pmod:R := (prevPrime(2**26)$IntegerPrimesPackage(Integer))::R
--JHD import MultivariateLifting(E,OV,R,P,pmod)
import UnivariatePolynomialCategoryFunctions2(R,SUPR,P,SUPP)
import UnivariatePolynomialCategoryFunctions2(P,SUPP,R,SUPR)
-------- Local Functions --------
--JHD abs : P -> P
better : (P,P) -> Boolean
--JHD failtest : (P,P,P) -> Boolean
--JHD gcdMonom : (P,P,OV) -> P
--JHD gcdTermList : (P,P) -> P
--JHD gcdPrim : (P,P,OV) -> P
--JHD gcdSameMainvar : (P,P,OV) -> P
--JHD internal : (P,P,OV) -> P
--JHD good : (P,List OV) -> Record(upol:SUPR,inval:List R)
--JHD gcdPrs : (P,P,NNI,OV) -> Union(P,"failed")
--JHD
--JHD chooseVal : (P,P,List OV) -> UTerm
--JHD localgcd : (P,P,List OV) -> LGcd
--JHD notCoprime : (P,P, List NNI,List OV) -> P
--JHD imposelc : (List SUPR,List OV,List R,List P) -> List SUPR
--JHD lift? :(P,P,UTerm,List NNI,List OV) -> Union("failed",P)
-- lift :(P,SUPR,SUPR,P,List OV,List NNI,List R) -> P
lift : (SUPR,SUPP,SUPR,List OV,List R) -> Union(SUPP,"failed")
-- lifts first and third arguments as factors of the second
-- fourth is number of variables.
--JHD monomContent : (P,OV) -> P
monomContentSup : SUPP -> SUPP
--
--JHD gcdcofact : List P -> List P
gcdTrivial : (SUPP,SUPP) -> SUPP
gcdSameVariables: (SUPP,SUPP,List OV) -> SUPP
recursivelyGCDCoefficients: (SUPP,List OV,SUPP,List OV) -> SUPP
flatten : (SUPP,List OV) -> SUPP
-- evaluates out all variables in the second
-- argument, leaving a polynomial of the same
-- degree
-- eval : (SUPP,List OV,List R) -> SUPP
variables : SUPP -> List OV
---- JHD's exported functions ---
gcdPolynomial(p1:SUPP,p2:SUPP) ==
zero? p1 => p2
zero? p2 => p1
0=degree p1 => gcdTrivial(p1,p2)
0=degree p2 => gcdTrivial(p2,p1)
if degree p1 < degree p2 then (p1,p2):=(p2,p1)
p1 exquo p2 case SUPP => (unitNormal p2).canonical
c1:= monomContentSup(p1)
c2:= monomContentSup(p2)
p1:= (p1 exquo c1)::SUPP
p2:= (p2 exquo c2)::SUPP
(p1 exquo p2) case SUPP => (unitNormal p2).canonical * gcd(c1,c2)
vp1:=variables p1
vp2:=variables p2
v1:=setDifference(vp1,vp2)
v2:=setDifference(vp2,vp1)
#v1 = 0 and #v2 = 0 => gcdSameVariables(p1,p2,vp1)*gcd(c1,c2)
-- all variables are in common
v:=setDifference(vp1,v1)
pp1:=flatten(p1,v1)
pp2:=flatten(p2,v2)
g:=gcdSameVariables(pp1,pp2,v)
one? g => gcd(c1,c2)::SUPP
(#v1 = 0 or not (p1 exquo g) case "failed") and
-- if #vi = 0 then pp1 = p1, so we know g divides
(#v2 = 0 or not (p2 exquo g) case "failed")
=> g*gcd(c1,c2) -- divdes them both, so is the gcd
-- OK, so it's not the gcd: try again
v:=variables g -- there can be at most these variables in answer
v1:=setDifference(vp1,v)
v2:=setDifference(vp2,v)
if (#v1 = 0) then g:= gcdSameVariables(g,flatten(p2,v2),v)
else if (#v2=0) then g:=gcdSameVariables(g,flatten(p1,v1),v)
else g:=gcdSameVariables(g,flatten(p1,v1)-flatten(p2,v2),v)
one? g => gcd(c1,c2)::SUPP
(#v1 = 0 or not (p1 exquo g) case "failed") and
(#v2 = 0 or not (p2 exquo g) case "failed")
=> g*gcd(c1,c2)::SUPP -- divdes them both, so is the gcd
v:=variables g -- there can be at most these variables in answer
v1:=setDifference(vp1,v)
if #v1 ~= 0 then
g:=recursivelyGCDCoefficients(g,v,p1,v1)
one? g => return gcd(c1,c2)::SUPP
v:=variables g -- there can be at most these variables in answer
v2:=setDifference(vp2,v)
recursivelyGCDCoefficients(g,v,p2,v2)*gcd(c1,c2)
if R has StepThrough then
randomCount:R := init()
randomR() ==
(v:=nextItem(randomCount)) case R =>
randomCount:=v
v
SAY("Taking next stepthrough range in GeneralPolynomialGcdPackage")$Lisp
randomCount:=init()
randomCount
else
randomR() == (random$Integer() rem 100)::R
---- JHD's local functions ---
gcdSameVariables(p1:SUPP,p2:SUPP,lv:List OV) ==
-- two non-trivial primitive (or, at least, we don't care
-- about content)
-- polynomials with precisely the same degree
#lv = 0 => map(#1::P,gcdPolynomial(map(ground,p1),
map(ground,p2)))
degree p2 = 1 =>
p1 exquo p2 case SUPP => p2
1
gcdLC:=gcd(leadingCoefficient p1,leadingCoefficient p2)
lr:=[randomR() for vv in lv]
count:NonNegativeInteger:=0
while count<10 repeat
while zero? eval(gcdLC,lv,lr) and count<10 repeat
lr:=[randomR() for vv in lv]
count:=count+1
count = 10 => error "too many evaluations in GCD code"
up1:SUPR:=map(ground eval(#1,lv,lr),p1)
up2:SUPR:=map(ground eval(#1,lv,lr),p2)
u:=gcdPolynomial(up1,up2)
degree u = 0 => return 1
-- let's pick a second one, just to check
lrr:=[randomR() for vv in lv]
while zero? eval(gcdLC,lv,lrr) and count<10 repeat
lrr:=[randomR() for vv in lv]
count:=count+1
count = 10 => error "too many evaluations in GCD code"
vp1:SUPR:=map(ground eval(#1,lv,lrr),p1)
vp2:SUPR:=map(ground eval(#1,lv,lrr),p2)
v:=gcdPolynomial(vp1,vp2)
degree v = 0 => return 1
if degree v < degree u then
u:=v
up1:=vp1
up2:=vp2
lr:=lrr
up1:=(up1 exquo u)::SUPR
degree gcd(u,up1) = 0 =>
ans:=lift(u,p1,up1,lv,lr)
ans case SUPP => return ans
"next"
up2:=(up2 exquo u)::SUPR
degree gcd(u,up2) = 0 =>
ans:=lift(u,p2,up2,lv,lr)
ans case SUPP => return ans
"next"
-- so neither cofactor is relatively prime
count:=0
while count < 10 repeat
r:=randomR()
uu:=up1+r*up2
degree gcd(u,uu)=0 =>
ans:= lift(u,p1+r::P *p2,uu,lv,lr)
ans case SUPP => return ans
"next"
error "too many evaluations in GCD code"
count >= 10 => error "too many evaluations in GCD code"
lift(gR:SUPR,p:SUPP,cfR:SUPR,lv:List OV,lr:List R) ==
-- lift the coprime factorisation gR*cfR = (univariate of p)
-- where the variables lv have been evaluated at lr
lcp:=leadingCoefficient p
g:=monomial(lcp,degree gR)+map(#1::P,reductum gR)
cf:=monomial(lcp,degree cfR)+map(#1::P,reductum cfR)
p:=lcp*p -- impose leaidng coefficient of p on each factor
while lv ~= [] repeat
v:=first lv
r:=first lr
lv:=rest lv
lr:=rest lr
thisp:=map(eval(#1,lv,lr),p)
d:="max"/[degree(c,v) for c in coefficients p]
prime:=v::P - r::P
pn:=prime
origFactors:=[g,cf]::List SUPP
for n in 1..d repeat
Ecart:=(thisp- g*cf) exquo pn
Ecart case "failed" =>
error "failed lifting in hensel in Complex Polynomial GCD"
zero? Ecart => leave
step:=solveLinearPolynomialEquation(origFactors,
map(eval(#1,v,r),Ecart::SUPP))
step case "failed" => return "failed"
g:=g+pn*first step
cf:=cf+pn*second step
pn:=pn*prime
thisp ~= g*cf => return "failed"
g
recursivelyGCDCoefficients(g:SUPP,v:List OV,p:SUPP,pv:List OV) ==
mv:=first pv -- take each coefficient w.r.t. mv
pv:=rest pv -- and recurse on pv as necessary
d:="max"/[degree(u,mv) for u in coefficients p]
for i in 0..d repeat
p1:=map(coefficient(#1,mv,i),p)
oldg:=g
if pv = [] then g:=gcdSameVariables(g,p1,v)
else g:=recursivelyGCDCoefficients(p,v,p1,pv)
one? g => return 1
g~=oldg =>
oldv:=v
v:=variables g
pv:=setUnion(pv,setDifference(v,oldv))
g
flatten(p1:SUPP,lv:List OV) ==
#lv = 0 => p1
lr:=[ randomR() for vv in lv]
dg:=degree p1
ans : SUPP
while dg ~= degree (ans:= map(eval(#1,lv,lr),p1)) repeat
lr:=[ randomR() for vv in lv]
ans
-- eval(p1:SUPP,lv:List OV,lr:List R) == map(eval(#1,lv,lr),p1)
variables(p1:SUPP) ==
removeDuplicates ("concat"/[variables u for u in coefficients p1])
gcdTrivial(p1:SUPP,p2:SUPP) ==
-- p1 is non-zero, but has degree zero
-- p2 is non-zero
cp1:=leadingCoefficient p1
one? cp1 => 1
degree p2 = 0 => gcd(cp1,leadingCoefficient p2)::SUPP
un?:=unit? cp1
while not zero? p2 and not un? repeat
cp1:=gcd(leadingCoefficient p2,cp1)
un?:=unit? cp1
p2:=reductum p2
un? => 1
cp1::SUPP
---- Local functions ----
--JHD -- test if something wrong happened in the gcd
--JHD failtest(f:P,p1:P,p2:P) : Boolean ==
--JHD (p1 exquo f) case "failed" or (p2 exquo f) case "failed"
--JHD
--JHD -- Choose the integers
--JHD chooseVal(p1:P,p2:P,lvar:List OV):UTerm ==
--JHD x:OV:=lvar.first
--JHD lvr:=lvar.rest
--JHD d1:=degree(p1,x)
--JHD d2:=degree(p2,x)
--JHD dd:NNI:=0$NNI
--JHD nvr:NNI:=#lvr
--JHD lval:List R :=[]
--JHD range:I:=8
--JHD for i in 1.. repeat
--JHD range:=2*range
--JHD lval:=[(random()$I rem (2*range) - range)::R for i in 1..nvr]
--JHD uf1:SUPR:=univariate eval(p1,lvr,lval)
--JHD degree uf1 ~= d1 => "new point"
--JHD uf2:SUPR:=univariate eval(p2,lvr,lval)
--JHD degree uf2 ~= d2 => "new point"
--JHD u:=gcd(uf1,uf2)
--JHD du:=degree u
--JHD --the univariate gcd is 1
--JHD if du=0 then return [[1$SUPR],lval,0$P]$UTerm
--JHD
--JHD ugcd:List SUPR:=[u,(uf1 exquo u)::SUPR,(uf2 exquo u)::SUPR]
--JHD uterm:=[ugcd,lval,0$P]$UTerm
--JHD dd=0 => dd:=du
--JHD
--JHD --the degree is not changed
--JHD du=dd =>
--JHD
--JHD --test if one of the polynomials is the gcd
--JHD dd=d1 =>
--JHD if ^((f:=p2 exquo p1) case "failed") then
--JHD return [[u],lval,p1]$UTerm
--JHD if dd~=d2 then dd:=(dd-1)::NNI
--JHD
--JHD dd=d2 =>
--JHD if ^((f:=p1 exquo p2) case "failed") then
--JHD return [[u],lval,p2]$UTerm
--JHD dd:=(dd-1)::NNI
--JHD return uterm
--JHD
--JHD --the new gcd has degree less
--JHD du<dd => dd:=du
--JHD
--JHD good(f:P,lvr:List OV):Record(upol:SUPR,inval:List R) ==
--JHD nvr:NNI:=#lvr
--JHD range:I:=1
--JHD ltry:List List R:=[]
--JHD while true repeat
--JHD range:=2*range
--JHD lval:=[(random()$I rem (2*range) -range)::R for i in 1..nvr]
--JHD member?(lval,ltry) => "new point"
--JHD ltry:=cons(lval,ltry)
--JHD uf:=univariate eval(f,lvr,lval)
--JHD if degree gcd(uf,differentiate uf)=0 then return [uf,lval]
--JHD
--JHD -- impose the right lc
--JHD imposelc(lipol:List SUPR,
--JHD lvar:List OV,lval:List R,leadc:List P):List SUPR ==
--JHD result:List SUPR :=[]
--JHD lvar:=lvar.rest
--JHD for pol in lipol for leadpol in leadc repeat
--JHD p1:= univariate eval(leadpol,lvar,lval) * pol
--JHD result:= cons((p1 exquo leadingCoefficient pol)::SUPR,result)
--JHD reverse result
--JHD
--JHD --Compute the gcd between not coprime polynomials
--JHD notCoprime(g:P,p2:P,ldeg:List NNI,lvar:List OV) : P ==
--JHD x:OV:=lvar.first
--JHD lvar1:List OV:=lvar.rest
--JHD lg1:=gcdcofact([g,differentiate(g,x)])
--JHD g1:=lg1.1
--JHD lg:LGcd:=localgcd(g1,p2,lvar)
--JHD (l,lval):=(lg.locgcd,lg.goodint)
--JHD p2:=(p2 exquo l)::P
--JHD (gd1,gd2):=(l,l)
--JHD ul:=univariate(eval(l,lvar1,lval))
--JHD dl:=degree ul
--JHD if degree gcd(ul,differentiate ul) ~=0 then
--JHD newchoice:=good(l,lvar.rest)
--JHD ul:=newchoice.upol
--JHD lval:=newchoice.inval
--JHD ug1:=univariate(eval(g1,lvar1,lval))
--JHD ulist:=[ug1,univariate eval(p2,lvar1,lval)]
--JHD lcpol:=[leadingCoefficient univariate(g1,x),
--JHD leadingCoefficient univariate(p2,x)]
--JHD while true repeat
--JHD d:SUPR:=gcd(cons(ul,ulist))
--JHD if degree d =0 then return gd1
--JHD lquo:=(ul exquo d)::SUPR
--JHD if degree lquo ~=0 then
--JHD lgcd:=gcd(cons(leadingCoefficient univariate(l,x),lcpol))
--JHD gd2:=lift(l,d,lquo,lgcd,lvar,ldeg,lval)
--JHD l:=gd2
--JHD ul:=univariate(eval(l,lvar1,lval))
--JHD dl:=degree ul
--JHD gd1:=gd1*gd2
--JHD ulist:=[(uf exquo d)::SUPR for uf in ulist]
--JHD
--JHD -- we suppose that the poly have the same mainvar, deg p1<deg p2 and the
--JHD -- polys primitive
--JHD internal(p1:P,p2:P,x:OV) : P ==
--JHD lvar:List OV:=sort(#1>#2,setUnion(variables p1,variables p2))
--JHD d1:=degree(p1,x)
--JHD d2:=degree(p2,x)
--JHD result: P:=localgcd(p1,p2,lvar).locgcd
--JHD -- special cases
--JHD result=1 => 1$P
--JHD (dr:=degree(result,x))=d1 or dr=d2 => result
--JHD while failtest(result,p1,p2) repeat
--JHD SAY$Lisp "retrying gcd"
--JHD result:=localgcd(p1,p2,lvar).locgcd
--JHD result
--JHD
--JHD --local function for the gcd : it returns the evaluation point too
--JHD localgcd(p1:P,p2:P,lvar:List(OV)) : LGcd ==
--JHD x:OV:=lvar.first
--JHD uterm:=chooseVal(p1,p2,lvar)
--JHD listpol:= uterm.lpol
--JHD ud:=listpol.first
--JHD dd:= degree ud
--JHD
--JHD --the univariate gcd is 1
--JHD dd=0 => [1$P,uterm.lint]$LGcd
--JHD
--JHD --one of the polynomials is the gcd
--JHD dd=degree(p1,x) or dd=degree(p2,x) =>
--JHD [uterm.mpol,uterm.lint]$LGcd
--JHD ldeg:List NNI:=map(min,degree(p1,lvar),degree(p2,lvar))
--JHD
--JHD -- if there is a polynomial g s.t. g/gcd and gcd are coprime ...
--JHD -- I can lift
--JHD (h:=lift?(p1,p2,uterm,ldeg,lvar)) case "failed" =>
--JHD [notCoprime(p1,p2,ldeg,lvar),uterm.lint]$LGcd
--JHD [h::P,uterm.lint]$LGcd
--JHD
--JHD
--JHD -- content, internal functions return the poly if it is a monomial
--JHD monomContent(p:P,var:OV):P ==
--JHD ground? p => 1$P
--JHD md:= minimumDegree(p,var)
--JHD ((var::P)**md)*(gcd sort(better,coefficients univariate(p,var)))
monomContentSup(u:SUPP):SUPP ==
degree(u) = 0$NonNegativeInteger => 1$SUPP
md:= minimumDegree u
gcd(sort(better,coefficients u)) * monomial(1$P,md)$SUPP
--JHD -- change the polynomials to have positive lc
--JHD abs(p:P): P == unitNormal(p).canonical
-- Ordering for gcd purposes
better(p1:P,p2:P):Boolean ==
ground? p1 => true
ground? p2 => false
degree(p1,mainVariable(p1)::OV) < degree(p2,mainVariable(p2)::OV)
-- PRS algorithm
-- gcdPrs(p1:P,p2:P,d:NNI,var:OV):Union(P,"failed") ==
-- u1:= univariate(p1,var)
-- u2:= univariate(p2,var)
-- finished:Boolean:= false
-- until finished repeat
-- dd:NNI:=(degree u1 - degree u2)::NNI
-- lc1:SUPP:=leadingCoefficient u2 * reductum u1
-- lc2:SUPP:=leadingCoefficient u1 * reductum u2
-- u3:SUPP:= primitate((lc1-lc2)*monomial(1$P,dd))$%
-- (d3:=degree(u3)) <= d => finished:= true
-- u1:= u2
-- u2:= u3
-- if d3 > degree(u1) then (u1,u2):= (u2,u1)
-- g:= (u2 exquo u3)
-- g case SUPP => abs multivariate(u3,var)
-- "failed"
-- Gcd between polynomial p1 and p2 with
-- mainVariable p1 < x=mainVariable p2
--JHD gcdTermList(p1:P,p2:P) : P ==
--JHD termList:=sort(better,
--JHD cons(p1,coefficients univariate(p2,(mainVariable p2)::OV)))
--JHD q:P:=termList.first
--JHD for term in termList.rest until q = 1$P repeat q:= gcd(q,term)
--JHD q
--JHD
--JHD -- Gcd between polynomials with the same mainVariable
--JHD gcdSameMainvar(p1:P,p2:P,mvar:OV): P ==
--JHD if degree(p1,mvar) < degree(p2,mvar) then (p1,p2):= (p2,p1)
--JHD (p1 exquo p2) case P => abs p2
--JHD c1:= monomContent(p1,mvar)$%
--JHD c1 = p1 => gcdMonom(p1,p2,mvar)
--JHD c2:= monomContent(p2,mvar)$%
--JHD c2 = p2 => gcdMonom(p2,p1,mvar)
--JHD p1:= (p1 exquo c1)::P
--JHD p2:= (p2 exquo c2)::P
--JHD if degree(p1,mvar) < degree(p2,mvar) then (p1,p2):= (p2,p1)
--JHD (p1 exquo p2) case P => abs(p2) * gcd(c1,c2)
--JHD abs(gcdPrim(p1,p2,mvar)) * gcd(c1,c2)
--JHD
--JHD -- make the polynomial primitive with respect to var
--JHD primitate(p:P,var:OV):P == (p exquo monomContent(p,var))::P
--JHD
--JHD primitate(u:SUPP):SUPP == (u exquo monomContentSup u)::SUPP
--JHD
--JHD -- gcd between primitive polynomials with the same mainVariable
--JHD gcdPrim(p1:P,p2:P,mvar:OV):P ==
--JHD vars:= removeDuplicates append(variables p1,variables p2)
--JHD #vars=1 => multivariate(gcd(univariate p1,univariate p2),mvar)
--JHD vars:=delete(vars,position(mvar,vars))
--JHD --d:= degModGcd(p1,p2,mvar,vars)
--JHD --d case "failed" => internal(p2,p1,mvar)
--JHD --deg:= d:NNI
--JHD --deg = 0$NNI => 1$P
--JHD --deg = degree(p1,mvar) =>
--JHD -- (p2 exquo p1) case P => abs(p1) -- already know that
--JHD -- ^(p1 exquo p2)
--JHD -- internal(p2,p1,mvar)
--JHD --cheapPrs?(p1,p2,deg,mvar) =>
--JHD -- g:= gcdPrs(p1,p2,deg,mvar)
--JHD -- g case P => g::P
--JHD -- internal(p2,p1,mvar)
--JHD internal(p2,p1,mvar)
--JHD
--JHD -- gcd between a monomial and a polynomial
--JHD gcdMonom(m:P,p:P,var:OV):P ==
--JHD ((var::P) ** min(minimumDegree(m,var),minimumDegree(p,var))) *
--JHD gcdTermList(leadingCoefficient(univariate(m,var)),p)
--JHD
--JHD --If there is a pol s.t. pol/gcd and gcd are coprime I can lift
--JHD lift?(p1:P,p2:P,uterm:UTerm,ldeg:List NNI,
--JHD lvar:List OV) : Union("failed",P) ==
--JHD x:OV:=lvar.first
--JHD leadpol:Boolean:=false
--JHD (listpol,lval):=(uterm.lpol,uterm.lint)
--JHD d:=listpol.first
--JHD listpol:=listpol.rest
--JHD nolift:Boolean:=true
--JHD for uf in listpol repeat
--JHD --note uf and d not necessarily primitive
--JHD degree gcd(uf,d) =0 => nolift:=false
--JHD nolift => "failed"
--JHD f:P:=([p1,p2]$List(P)).(position(uf,listpol))
--JHD lgcd:=gcd(leadingCoefficient univariate(p1,x),
--JHD leadingCoefficient univariate(p2,x))
--JHD lift(f,d,uf,lgcd,lvar,ldeg,lval)
--JHD
--JHD -- interface with the general "lifting" function
--JHD lift(f:P,d:SUPR,uf:SUPR,lgcd:P,lvar:List OV,
--JHD ldeg:List NNI,lval:List R):P ==
--JHD x:OV:=lvar.first
--JHD leadpol:Boolean:=false
--JHD lcf:P
--JHD lcf:=leadingCoefficient univariate(f,x)
--JHD df:=degree(f,x)
--JHD leadlist:List(P):=[]
--JHD
--JHD if lgcd~=1$P then
--JHD leadpol:=true
--JHD f:=lgcd*f
--JHD ldeg:=[n0+n1 for n0 in ldeg for n1 in degree(lgcd,lvar)]
--JHD lcd:R:=leadingCoefficient d
--JHD if ground? lgcd then d:=((retract lgcd) *d exquo lcd)::SUPR
--JHD else d:=(retract(eval(lgcd,lvar.rest,lval)) * d exquo lcd)::SUPR
--JHD uf:=lcd*uf
--JHD leadlist:=[lgcd,lcf]
--JHD lg:=imposelc([d,uf],lvar,lval,leadlist)
--JHD plist:=lifting(univariate(f,x),lvar,lg,lval,leadlist,ldeg)::List P
--JHD (p0:P,p1:P):=(plist.first,plist.2)
--JHD if univariate eval(p0,rest lvar,lval) ~= lg.first then
--JHD (p0,p1):=(p1,p0)
--JHD ^leadpol => p0
--JHD cprim:=contprim([p0])
--JHD cprim.first.prim
--JHD
--JHD -- Gcd for two multivariate polynomials
--JHD gcd(p1:P,p2:P) : P ==
--JHD (p1:= abs(p1)) = (p2:= abs(p2)) => p1
--JHD ground? p1 =>
--JHD p1 = 1$P => p1
--JHD p1 = 0$P => p2
--JHD ground? p2 => gcd((retract p1)@R,(retract p2)@R)::P
--JHD gcdTermList(p1,p2)
--JHD ground? p2 =>
--JHD p2 = 1$P => p2
--JHD p2 = 0$P => p1
--JHD gcdTermList(p2,p1)
--JHD mv1:= mainVariable(p1)::OV
--JHD mv2:= mainVariable(p2)::OV
--JHD mv1 = mv2 => gcdSameMainvar(p1,p2,mv1)
--JHD mv1 < mv2 => gcdTermList(p1,p2)
--JHD gcdTermList(p2,p1)
--JHD
--JHD -- Gcd for a list of multivariate polynomials
--JHD gcd(listp:List P) : P ==
--JHD lf:=sort(better,listp)
--JHD f:=lf.first
--JHD for g in lf.rest repeat
--JHD f:=gcd(f,g)
--JHD if f=1$P then return f
--JHD f
--JHD -- Gcd and cofactors for a list of polynomials
--JHD gcdcofact(listp : List P) : List P ==
--JHD h:=gcd listp
--JHD cons(h,[(f exquo h) :: P for f in listp])
--JHD
--JHD -- Gcd for primitive polynomials
--JHD gcdprim(p1:P,p2:P):P ==
--JHD (p1:= abs(p1)) = (p2:= abs(p2)) => p1
--JHD ground? p1 =>
--JHD ground? p2 => gcd((retract p1)@R,(retract p2)@R)::P
--JHD p1 = 0$P => p2
--JHD 1$P
--JHD ground? p2 =>
--JHD p2 = 0$P => p1
--JHD 1$P
--JHD mv1:= mainVariable(p1)::OV
--JHD mv2:= mainVariable(p2)::OV
--JHD mv1 = mv2 =>
--JHD md:=min(minimumDegree(p1,mv1),minimumDegree(p2,mv1))
--JHD mp:=1$P
--JHD if md>1 then
--JHD mp:=(mv1::P)**md
--JHD p1:=(p1 exquo mp)::P
--JHD p2:=(p2 exquo mp)::P
--JHD mp*gcdPrim(p1,p2,mv1)
--JHD 1$P
--JHD
--JHD -- Gcd for a list of primitive multivariate polynomials
--JHD gcdprim(listp:List P) : P ==
--JHD lf:=sort(better,listp)
--JHD f:=lf.first
--JHD for g in lf.rest repeat
--JHD f:=gcdprim(f,g)
--JHD if f=1$P then return f
--JHD f
--JHD -- Gcd and cofactors for a list of primitive polynomials
--JHD gcdcofactprim(listp : List P) : List P ==
--JHD h:=gcdprim listp
--JHD cons(h,[(f exquo h) :: P for f in listp])
--JHD
--JHD -- content of a polynomial (with respect to its main var)
--JHD content(f:P):P ==
--JHD ground? f => f
--JHD x:OV:=(mainVariable f)::OV
--JHD gcd sort(better,coefficients univariate(f,x))
--JHD
--JHD -- contents of a list of polynomials
--JHD content(listf:List P) : List P == [content f for f in listf]
--JHD
--JHD -- contents and primitive parts of a list of polynomials
--JHD contprim(listf:List P) : List ContPrim ==
--JHD prelim :List P := content listf
--JHD [[q,(f exquo q)::P]$ContPrim for q in prelim for f in listf]
--JHD
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package GENPGCD GeneralPolynomialGcdPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|